Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eel12131 | Structured version Visualization version GIF version |
Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) |
Ref | Expression |
---|---|
eel12131.1 | ⊢ (𝜑 → 𝜓) |
eel12131.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
eel12131.3 | ⊢ ((𝜑 ∧ 𝜏) → 𝜂) |
eel12131.4 | ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) |
Ref | Expression |
---|---|
eel12131 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eel12131.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝜏) → 𝜂) | |
2 | eel12131.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝜓) | |
3 | eel12131.2 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
4 | eel12131.4 | . . . . . . . . . 10 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) | |
5 | 4 | 3exp 1121 | . . . . . . . . 9 ⊢ (𝜓 → (𝜃 → (𝜂 → 𝜁))) |
6 | 2, 3, 5 | syl2imc 41 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝜒) → (𝜑 → (𝜂 → 𝜁))) |
7 | 6 | ex 416 | . . . . . . 7 ⊢ (𝜑 → (𝜒 → (𝜑 → (𝜂 → 𝜁)))) |
8 | 7 | pm2.43b 55 | . . . . . 6 ⊢ (𝜒 → (𝜑 → (𝜂 → 𝜁))) |
9 | 8 | com13 88 | . . . . 5 ⊢ (𝜂 → (𝜑 → (𝜒 → 𝜁))) |
10 | 1, 9 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝜏) → (𝜑 → (𝜒 → 𝜁))) |
11 | 10 | ex 416 | . . 3 ⊢ (𝜑 → (𝜏 → (𝜑 → (𝜒 → 𝜁)))) |
12 | 11 | pm2.43b 55 | . 2 ⊢ (𝜏 → (𝜑 → (𝜒 → 𝜁))) |
13 | 12 | 3imp231 1115 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1091 |
This theorem is referenced by: isosctrlem1ALT 42227 |
Copyright terms: Public domain | W3C validator |