Theorem List for Metamath Proof Explorer - 44901-45000 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | trintALT 44901* |
The intersection of a class of transitive sets is transitive. Exercise
5(b) of [Enderton] p. 73. trintALT 44901 is an alternate proof of trint 5277.
trintALT 44901 is trintALTVD 44900 without virtual deductions and was
automatically derived from trintALTVD 44900 using the tools program
translate..without..overwriting.cmd and the Metamath program
"MM-PA>
MINIMIZE_WITH *" command. (Contributed by Alan Sare, 17-Apr-2012.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∩
𝐴) |
| |
| Theorem | undif3VD 44902 |
The first equality of Exercise 13 of [TakeutiZaring] p. 22. Virtual
deduction proof of undif3 4300.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
undif3 4300 is undif3VD 44902 without virtual deductions and was automatically
derived from undif3VD 44902.
| 1:: | ⊢ (𝑥 ∈ (𝐴 ∪ (𝐵 ∖ 𝐶)) ↔ (𝑥 ∈ 𝐴
∨ 𝑥 ∈ (𝐵 ∖ 𝐶)))
| | 2:: | ⊢ (𝑥 ∈ (𝐵 ∖ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈
𝐶))
| | 3:2: | ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ (𝐵 ∖ 𝐶)) ↔ (𝑥
∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)))
| | 4:1,3: | ⊢ (𝑥 ∈ (𝐴 ∪ (𝐵 ∖ 𝐶)) ↔ (𝑥 ∈ 𝐴
∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)))
| | 5:: | ⊢ ( 𝑥 ∈ 𝐴 ▶ 𝑥 ∈ 𝐴 )
| | 6:5: | ⊢ ( 𝑥 ∈ 𝐴 ▶ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) )
| | 7:5: | ⊢ ( 𝑥 ∈ 𝐴 ▶ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴) )
| | 8:6,7: | ⊢ ( 𝑥 ∈ 𝐴 ▶ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧
(¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)) )
| | 9:8: | ⊢ (𝑥 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (
¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)))
| | 10:: | ⊢ ( (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ▶ (𝑥 ∈ 𝐵
∧ ¬ 𝑥 ∈ 𝐶) )
| | 11:10: | ⊢ ( (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ▶ 𝑥 ∈ 𝐵 )
| | 12:10: | ⊢ ( (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ▶ ¬ 𝑥 ∈ 𝐶
)
| | 13:11: | ⊢ ( (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ▶ (𝑥 ∈ 𝐴
∨ 𝑥 ∈ 𝐵) )
| | 14:12: | ⊢ ( (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ▶ (¬ 𝑥 ∈
𝐶 ∨ 𝑥 ∈ 𝐴) )
| | 15:13,14: | ⊢ ( (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ▶ ((𝑥 ∈
𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)) )
| | 16:15: | ⊢ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) → ((𝑥 ∈ 𝐴
∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)))
| | 17:9,16: | ⊢ ((𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))
→ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)))
| | 18:: | ⊢ ( (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) ▶ (𝑥 ∈ 𝐴
∧ ¬ 𝑥 ∈ 𝐶) )
| | 19:18: | ⊢ ( (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) ▶ 𝑥 ∈ 𝐴 )
| | 20:18: | ⊢ ( (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) ▶ ¬ 𝑥 ∈ 𝐶
)
| | 21:18: | ⊢ ( (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) ▶ (𝑥 ∈ 𝐴
∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)) )
| | 22:21: | ⊢ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐴 ∨
(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)))
| | 23:: | ⊢ ( (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ▶ (𝑥 ∈ 𝐴 ∧
𝑥 ∈ 𝐴) )
| | 24:23: | ⊢ ( (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ▶ 𝑥 ∈ 𝐴 )
| | 25:24: | ⊢ ( (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ▶ (𝑥 ∈ 𝐴 ∨
(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)) )
| | 26:25: | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐴 ∨ (
𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)))
| | 27:10: | ⊢ ( (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ▶ (𝑥 ∈ 𝐴
∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)) )
| | 28:27: | ⊢ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐴 ∨
(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)))
| | 29:: | ⊢ ( (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ▶ (𝑥 ∈ 𝐵 ∧
𝑥 ∈ 𝐴) )
| | 30:29: | ⊢ ( (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ▶ 𝑥 ∈ 𝐴 )
| | 31:30: | ⊢ ( (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ▶ (𝑥 ∈ 𝐴 ∨
(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)) )
| | 32:31: | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐴 ∨ (
𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)))
| | 33:22,26: | ⊢ (((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) ∨ (𝑥 ∈ 𝐴
∧ 𝑥 ∈ 𝐴)) → (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)))
| | 34:28,32: | ⊢ (((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ∨ (𝑥 ∈ 𝐵
∧ 𝑥 ∈ 𝐴)) → (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)))
| | 35:33,34: | ⊢ ((((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) ∨ (𝑥 ∈
𝐴 ∧ 𝑥 ∈ 𝐴)) ∨ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ∨ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)))
→ (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)))
| | 36:: | ⊢ ((((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) ∨ (𝑥 ∈
𝐴 ∧ 𝑥 ∈ 𝐴)) ∨ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ∨ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)))
↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)))
| | 37:36,35: | ⊢ (((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶
∨ 𝑥 ∈ 𝐴)) → (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)))
| | 38:17,37: | ⊢ ((𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))
↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)))
| | 39:: | ⊢ (𝑥 ∈ (𝐶 ∖ 𝐴) ↔ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈
𝐴))
| | 40:39: | ⊢ (¬ 𝑥 ∈ (𝐶 ∖ 𝐴) ↔ ¬ (𝑥 ∈ 𝐶 ∧
¬ 𝑥 ∈ 𝐴))
| | 41:: | ⊢ (¬ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴) ↔ (¬ 𝑥
∈ 𝐶 ∨ 𝑥 ∈ 𝐴))
| | 42:40,41: | ⊢ (¬ 𝑥 ∈ (𝐶 ∖ 𝐴) ↔ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥
∈ 𝐴))
| | 43:: | ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵
))
| | 44:43,42: | ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ ¬ 𝑥 ∈ (𝐶 ∖ 𝐴)
) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴)))
| | 45:: | ⊢ (𝑥 ∈ ((𝐴 ∪ 𝐵) ∖ (𝐶 ∖ 𝐴)) ↔ (
𝑥 ∈ (𝐴 ∪ 𝐵) ∧ ¬ 𝑥 ∈ (𝐶 ∖ 𝐴)))
| | 46:45,44: | ⊢ (𝑥 ∈ ((𝐴 ∪ 𝐵) ∖ (𝐶 ∖ 𝐴)) ↔ (
(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)))
| | 47:4,38: | ⊢ (𝑥 ∈ (𝐴 ∪ (𝐵 ∖ 𝐶)) ↔ ((𝑥 ∈ 𝐴
∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)))
| | 48:46,47: | ⊢ (𝑥 ∈ (𝐴 ∪ (𝐵 ∖ 𝐶)) ↔ 𝑥 ∈ ((𝐴
∪ 𝐵) ∖ (𝐶 ∖ 𝐴)))
| | 49:48: | ⊢ ∀𝑥(𝑥 ∈ (𝐴 ∪ (𝐵 ∖ 𝐶)) ↔ 𝑥 ∈
((𝐴 ∪ 𝐵) ∖ (𝐶 ∖ 𝐴)))
| | qed:49: | ⊢ (𝐴 ∪ (𝐵 ∖ 𝐶)) = ((𝐴 ∪ 𝐵) ∖ (𝐶
∖ 𝐴))
|
(Contributed by Alan Sare, 17-Apr-2012.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∪ (𝐵 ∖ 𝐶)) = ((𝐴 ∪ 𝐵) ∖ (𝐶 ∖ 𝐴)) |
| |
| Theorem | sbcssgVD 44903 |
Virtual deduction proof of sbcssg 4520.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
sbcssg 4520 is sbcssgVD 44903 without virtual deductions and was automatically
derived from sbcssgVD 44903.
| 1:: | ⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 )
| | 2:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ 𝑦
∈ ⦋𝐴 / 𝑥⦌𝐶) )
| | 3:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]𝑦 ∈ 𝐷 ↔ 𝑦
∈ ⦋𝐴 / 𝑥⦌𝐷) )
| | 4:2,3: | ⊢ ( 𝐴 ∈ 𝐵 ▶ (([𝐴 / 𝑥]𝑦 ∈ 𝐶 →
[𝐴 / 𝑥]𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷
)) )
| | 5:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝑦 ∈ 𝐶 →
𝑦 ∈ 𝐷) ↔ ([𝐴 / 𝑥]𝑦 ∈ 𝐶 → [𝐴 / 𝑥]𝑦 ∈ 𝐷)) )
| | 6:4,5: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝑦 ∈ 𝐶 →
𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)) )
| | 7:6: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ∀𝑦([𝐴 / 𝑥](𝑦 ∈
𝐶 → 𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)) )
| | 8:7: | ⊢ ( 𝐴 ∈ 𝐵 ▶ (∀𝑦[𝐴 / 𝑥](𝑦 ∈
𝐶 → 𝑦 ∈ 𝐷) ↔ ∀𝑦(𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)
) )
| | 9:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]∀𝑦(𝑦 ∈
𝐶 → 𝑦 ∈ 𝐷) ↔ ∀𝑦[𝐴 / 𝑥](𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷)) )
| | 10:8,9: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]∀𝑦(𝑦 ∈
𝐶 → 𝑦 ∈ 𝐷) ↔ ∀𝑦(𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)
) )
| | 11:: | ⊢ (𝐶 ⊆ 𝐷 ↔ ∀𝑦(𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷))
| | 110:11: | ⊢ ∀𝑥(𝐶 ⊆ 𝐷 ↔ ∀𝑦(𝑦 ∈ 𝐶 → 𝑦 ∈
𝐷))
| | 12:1,110: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]𝐶 ⊆ 𝐷 ↔
[𝐴 / 𝑥]∀𝑦(𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷)) )
| | 13:10,12: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]𝐶 ⊆ 𝐷 ↔
∀𝑦(𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)) )
| | 14:: | ⊢ (⦋𝐴 / 𝑥⦌𝐶 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ↔ ∀
𝑦(𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷))
| | 15:13,14: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]𝐶 ⊆ 𝐷 ↔
⦋𝐴 / 𝑥⦌𝐶 ⊆ ⦋𝐴 / 𝑥⦌𝐷) )
| | qed:15: | ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝐶 ⊆ 𝐷 ↔ ⦋
𝐴 / 𝑥⦌𝐶 ⊆ ⦋𝐴 / 𝑥⦌𝐷))
|
(Contributed by Alan Sare, 22-Jul-2012.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝐶 ⊆ 𝐷 ↔ ⦋𝐴 / 𝑥⦌𝐶 ⊆ ⦋𝐴 / 𝑥⦌𝐷)) |
| |
| Theorem | csbingVD 44904 |
Virtual deduction proof of csbin 4442.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
csbin 4442 is csbingVD 44904 without virtual deductions and was
automatically derived from csbingVD 44904.
| 1:: | ⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 )
| | 2:: | ⊢ (𝐶 ∩ 𝐷) = {𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)
}
| | 20:2: | ⊢ ∀𝑥(𝐶 ∩ 𝐷) = {𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦
∈ 𝐷)}
| | 30:1,20: | ⊢ ( 𝐴 ∈ 𝐵 ▶ [𝐴 / 𝑥](𝐶 ∩ 𝐷) =
{𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} )
| | 3:1,30: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) =
⦋𝐴 / 𝑥⦌{𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} )
| | 4:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ⦋𝐴 / 𝑥⦌{𝑦 ∣ (𝑦 ∈ 𝐶
∧ 𝑦 ∈ 𝐷)} = {𝑦 ∣ [𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} )
| | 5:3,4: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) =
{𝑦 ∣ [𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} )
| | 6:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ 𝑦
∈ ⦋𝐴 / 𝑥⦌𝐶) )
| | 7:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]𝑦 ∈ 𝐷 ↔ 𝑦
∈ ⦋𝐴 / 𝑥⦌𝐷) )
| | 8:6,7: | ⊢ ( 𝐴 ∈ 𝐵 ▶ (([𝐴 / 𝑥]𝑦 ∈ 𝐶 ∧
[𝐴 / 𝑥]𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷
)) )
| | 9:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧
𝑦 ∈ 𝐷) ↔ ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐷)) )
| | 10:9,8: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧
𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)) )
| | 11:10: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ∀𝑦([𝐴 / 𝑥](𝑦 ∈
𝐶 ∧ 𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)) )
| | 12:11: | ⊢ ( 𝐴 ∈ 𝐵 ▶ {𝑦 ∣ [𝐴 / 𝑥](𝑦 ∈ 𝐶
∧ 𝑦 ∈ 𝐷)} = {𝑦 ∣ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)} )
| | 13:5,12: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) =
{𝑦 ∣ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)} )
| | 14:: | ⊢ (⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷) = {
𝑦 ∣ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)}
| | 15:13,14: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) =
(⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷) )
| | qed:15: | ⊢ (𝐴 ∈ 𝐵 → ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = (
⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷))
|
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝐵 → ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = (⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷)) |
| |
| Theorem | onfrALTlem5VD 44905* |
Virtual deduction proof of onfrALTlem5 44562.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
onfrALTlem5 44562 is onfrALTlem5VD 44905 without virtual deductions and was
automatically derived from onfrALTlem5VD 44905.
| 1:: | ⊢ 𝑎 ∈ V
| | 2:1: | ⊢ (𝑎 ∩ 𝑥) ∈ V
| | 3:2: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]𝑏 = ∅ ↔ (𝑎
∩ 𝑥) = ∅)
| | 4:3: | ⊢ (¬ [(𝑎 ∩ 𝑥) / 𝑏]𝑏 = ∅ ↔
¬ (𝑎 ∩ 𝑥) = ∅)
| | 5:: | ⊢ ((𝑎 ∩ 𝑥) ≠ ∅ ↔ ¬ (𝑎 ∩ 𝑥
) = ∅)
| | 6:4,5: | ⊢ (¬ [(𝑎 ∩ 𝑥) / 𝑏]𝑏 = ∅ ↔
(𝑎 ∩ 𝑥) ≠ ∅)
| | 7:2: | ⊢ (¬ [(𝑎 ∩ 𝑥) / 𝑏]𝑏 = ∅ ↔
[(𝑎 ∩ 𝑥) / 𝑏]¬ 𝑏 = ∅)
| | 8:: | ⊢ (𝑏 ≠ ∅ ↔ ¬ 𝑏 = ∅)
| | 9:8: | ⊢ ∀𝑏(𝑏 ≠ ∅ ↔ ¬ 𝑏 = ∅)
| | 10:2,9: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]𝑏 ≠ ∅ ↔
[(𝑎 ∩ 𝑥) / 𝑏]¬ 𝑏 = ∅)
| | 11:7,10: | ⊢ (¬ [(𝑎 ∩ 𝑥) / 𝑏]𝑏 = ∅ ↔
[(𝑎 ∩ 𝑥) / 𝑏]𝑏 ≠ ∅)
| | 12:6,11: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]𝑏 ≠ ∅ ↔ (
𝑎 ∩ 𝑥) ≠ ∅)
| | 13:2: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]𝑏 ⊆ (𝑎 ∩ 𝑥
) ↔ (𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥))
| | 14:12,13: | ⊢ (([(𝑎 ∩ 𝑥) / 𝑏]𝑏 ⊆ (𝑎 ∩
𝑥) ∧ [(𝑎 ∩ 𝑥) / 𝑏]𝑏 ≠ ∅) ↔ ((𝑎 ∩ 𝑥) ⊆ (𝑎
∩ 𝑥) ∧ (𝑎 ∩ 𝑥) ≠ ∅))
| | 15:2: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏](𝑏 ⊆ (𝑎 ∩
𝑥) ∧ 𝑏 ≠ ∅) ↔ ([(𝑎 ∩ 𝑥) / 𝑏]𝑏 ⊆ (𝑎 ∩ 𝑥) ∧
[(𝑎 ∩ 𝑥) / 𝑏]𝑏 ≠ ∅))
| | 16:15,14: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏](𝑏 ⊆ (𝑎 ∩
𝑥) ∧ 𝑏 ≠ ∅) ↔ ((𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ (𝑎 ∩ 𝑥)
≠ ∅))
| | 17:2: | ⊢ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌(𝑏 ∩ 𝑦) = (
⦋(𝑎 ∩ 𝑥) / 𝑏⦌𝑏 ∩ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌𝑦)
| | 18:2: | ⊢ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌𝑏 = (𝑎 ∩ 𝑥)
| | 19:2: | ⊢ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌𝑦 = 𝑦
| | 20:18,19: | ⊢ (⦋(𝑎 ∩ 𝑥) / 𝑏⦌𝑏 ∩ ⦋(𝑎
∩ 𝑥) / 𝑏⦌𝑦) = ((𝑎 ∩ 𝑥) ∩ 𝑦)
| | 21:17,20: | ⊢ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌(𝑏 ∩ 𝑦) = ((
𝑎 ∩ 𝑥) ∩ 𝑦)
| | 22:2: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏](𝑏 ∩ 𝑦) =
∅ ↔ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌(𝑏 ∩ 𝑦) = ⦋(𝑎 ∩ 𝑥) / 𝑏⦌
∅)
| | 23:2: | ⊢ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌∅ = ∅
| | 24:21,23: | ⊢ (⦋(𝑎 ∩ 𝑥) / 𝑏⦌(𝑏 ∩ 𝑦) =
⦋(𝑎 ∩ 𝑥) / 𝑏⦌∅ ↔ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)
| | 25:22,24: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏](𝑏 ∩ 𝑦) =
∅ ↔ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)
| | 26:2: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]𝑦 ∈ 𝑏 ↔ 𝑦 ∈
(𝑎 ∩ 𝑥))
| | 27:25,26: | ⊢ (([(𝑎 ∩ 𝑥) / 𝑏]𝑦 ∈ 𝑏 ∧ [
(𝑎 ∩ 𝑥) / 𝑏](𝑏 ∩ 𝑦) = ∅) ↔ (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((
𝑎 ∩ 𝑥) ∩ 𝑦) = ∅))
| | 28:2: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏](𝑦 ∈ 𝑏 ∧ (𝑏
∩ 𝑦) = ∅) ↔ ([(𝑎 ∩ 𝑥) / 𝑏]𝑦 ∈ 𝑏 ∧ [(𝑎 ∩ 𝑥)
/ 𝑏](𝑏 ∩ 𝑦) = ∅))
| | 29:27,28: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏](𝑦 ∈ 𝑏 ∧ (𝑏
∩ 𝑦) = ∅) ↔ (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) =
∅))
| | 30:29: | ⊢ ∀𝑦([(𝑎 ∩ 𝑥) / 𝑏](𝑦 ∈ 𝑏
∧ (𝑏 ∩ 𝑦) = ∅) ↔ (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩
𝑦) = ∅))
| | 31:30: | ⊢ (∃𝑦[(𝑎 ∩ 𝑥) / 𝑏](𝑦 ∈ 𝑏
∧ (𝑏 ∩ 𝑦) = ∅) ↔ ∃𝑦(𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥)
∩ 𝑦) = ∅))
| | 32:: | ⊢ (∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩
𝑦) = ∅ ↔ ∃𝑦(𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅
))
| | 33:31,32: | ⊢ (∃𝑦[(𝑎 ∩ 𝑥) / 𝑏](𝑦 ∈ 𝑏
∧ (𝑏 ∩ 𝑦) = ∅) ↔ ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦)
= ∅)
| | 34:2: | ⊢ (∃𝑦[(𝑎 ∩ 𝑥) / 𝑏](𝑦 ∈ 𝑏
∧ (𝑏 ∩ 𝑦) = ∅) ↔ [(𝑎 ∩ 𝑥) / 𝑏]∃𝑦(𝑦 ∈ 𝑏 ∧ (
𝑏 ∩ 𝑦) = ∅))
| | 35:33,34: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]∃𝑦(𝑦 ∈ 𝑏
∧ (𝑏 ∩ 𝑦) = ∅) ↔ ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦
) = ∅)
| | 36:: | ⊢ (∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅ ↔ ∃𝑦
(𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦) = ∅))
| | 37:36: | ⊢ ∀𝑏(∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅ ↔
∃𝑦(𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦) = ∅))
| | 38:2,37: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]∃𝑦 ∈ 𝑏(𝑏
∩ 𝑦) = ∅ ↔ [(𝑎 ∩ 𝑥) / 𝑏]∃𝑦(𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦)
= ∅))
| | 39:35,38: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]∃𝑦 ∈ 𝑏(𝑏
∩ 𝑦) = ∅ ↔ ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)
| | 40:16,39: | ⊢ (([(𝑎 ∩ 𝑥) / 𝑏](𝑏 ⊆ (𝑎
∩ 𝑥) ∧ 𝑏 ≠ ∅) → [(𝑎 ∩ 𝑥) / 𝑏]∃𝑦 ∈ 𝑏(𝑏 ∩
𝑦) = ∅) ↔ (((𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ (𝑎 ∩ 𝑥) ≠
∅) → ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅))
| | 41:2: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]((𝑏 ⊆ (𝑎
∩ 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅) ↔ ([(𝑎
∩ 𝑥) / 𝑏](𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ 𝑏 ≠ ∅) → [(𝑎 ∩ 𝑥) /
𝑏]∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅))
| | qed:40,41: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]((𝑏 ⊆ (𝑎
∩ 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅) ↔ (((𝑎
∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ (𝑎 ∩ 𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎 ∩ 𝑥
)((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅))
|
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢
([(𝑎 ∩
𝑥) / 𝑏]((𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦 ∈ 𝑏 (𝑏 ∩ 𝑦) = ∅) ↔ (((𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ (𝑎 ∩ 𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)) |
| |
| Theorem | onfrALTlem4VD 44906* |
Virtual deduction proof of onfrALTlem4 44563.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
onfrALTlem4 44563 is onfrALTlem4VD 44906 without virtual deductions and was
automatically derived from onfrALTlem4VD 44906.
| 1:: | ⊢ 𝑦 ∈ V
| | 2:1: | ⊢ ([𝑦 / 𝑥](𝑎 ∩ 𝑥) = ∅ ↔ ⦋
𝑦 / 𝑥⦌(𝑎 ∩ 𝑥) = ⦋𝑦 / 𝑥⦌∅)
| | 3:1: | ⊢ ⦋𝑦 / 𝑥⦌(𝑎 ∩ 𝑥) = (⦋𝑦 / 𝑥⦌
𝑎 ∩ ⦋𝑦 / 𝑥⦌𝑥)
| | 4:1: | ⊢ ⦋𝑦 / 𝑥⦌𝑎 = 𝑎
| | 5:1: | ⊢ ⦋𝑦 / 𝑥⦌𝑥 = 𝑦
| | 6:4,5: | ⊢ (⦋𝑦 / 𝑥⦌𝑎 ∩ ⦋𝑦 / 𝑥⦌𝑥) = (
𝑎 ∩ 𝑦)
| | 7:3,6: | ⊢ ⦋𝑦 / 𝑥⦌(𝑎 ∩ 𝑥) = (𝑎 ∩ 𝑦)
| | 8:1: | ⊢ ⦋𝑦 / 𝑥⦌∅ = ∅
| | 9:7,8: | ⊢ (⦋𝑦 / 𝑥⦌(𝑎 ∩ 𝑥) = ⦋𝑦 / 𝑥⦌
∅ ↔ (𝑎 ∩ 𝑦) = ∅)
| | 10:2,9: | ⊢ ([𝑦 / 𝑥](𝑎 ∩ 𝑥) = ∅ ↔ (𝑎
∩ 𝑦) = ∅)
| | 11:1: | ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝑎 ↔ 𝑦 ∈ 𝑎)
| | 12:11,10: | ⊢ (([𝑦 / 𝑥]𝑥 ∈ 𝑎 ∧ [𝑦 / 𝑥](
𝑎 ∩ 𝑥) = ∅) ↔ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅))
| | 13:1: | ⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) =
∅) ↔ ([𝑦 / 𝑥]𝑥 ∈ 𝑎 ∧ [𝑦 / 𝑥](𝑎 ∩ 𝑥) = ∅))
| | qed:13,12: | ⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) =
∅) ↔ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅))
|
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ↔ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) |
| |
| Theorem | onfrALTlem3VD 44907* |
Virtual deduction proof of onfrALTlem3 44564.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
onfrALTlem3 44564 is onfrALTlem3VD 44907 without virtual deductions and was
automatically derived from onfrALTlem3VD 44907.
| 1:: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ (𝑎
⊆ On ∧ 𝑎 ≠ ∅) )
| | 2:: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) )
| | 3:2: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ 𝑥 ∈ 𝑎 )
| | 4:1: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ 𝑎 ⊆
On )
| | 5:3,4: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ 𝑥 ∈ On )
| | 6:5: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ Ord 𝑥 )
| | 7:6: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ E We 𝑥 )
| | 8:: | ⊢ (𝑎 ∩ 𝑥) ⊆ 𝑥
| | 9:7,8: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ E We (𝑎 ∩ 𝑥) )
| | 10:9: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ E Fr (𝑎 ∩ 𝑥) )
| | 11:10: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ∀𝑏((𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ 𝑏 ≠
∅) → ∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅) )
| | 12:: | ⊢ 𝑥 ∈ V
| | 13:12,8: | ⊢ (𝑎 ∩ 𝑥) ∈ V
| | 14:13,11: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ [(𝑎 ∩ 𝑥) / 𝑏]((𝑏 ⊆ (𝑎
∩ 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅) )
| | 15:: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]((𝑏 ⊆ (𝑎
∩ 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅) ↔ (((𝑎 ∩
𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ (𝑎 ∩ 𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎 ∩ 𝑥)(
(𝑎 ∩ 𝑥) ∩ 𝑦) = ∅))
| | 16:14,15: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ (((𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ (
𝑎 ∩ 𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦) =
∅) )
| | 17:: | ⊢ (𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥)
| | 18:2: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ¬ (𝑎 ∩ 𝑥) = ∅ )
| | 19:18: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ (𝑎 ∩ 𝑥) ≠ ∅ )
| | 20:17,19: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ((𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ (𝑎 ∩
𝑥) ≠ ∅) )
| | qed:16,20: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦
) = ∅ )
|
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅ ) |
| |
| Theorem | simplbi2comtVD 44908 |
Virtual deduction proof of simplbi2comt 501.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
simplbi2comt 501 is simplbi2comtVD 44908 without virtual deductions and was
automatically derived from simplbi2comtVD 44908.
| 1:: | ⊢ ( (𝜑 ↔ (𝜓 ∧ 𝜒)) ▶ (𝜑 ↔ (
𝜓 ∧ 𝜒)) )
| | 2:1: | ⊢ ( (𝜑 ↔ (𝜓 ∧ 𝜒)) ▶ ((𝜓 ∧ 𝜒
) → 𝜑) )
| | 3:2: | ⊢ ( (𝜑 ↔ (𝜓 ∧ 𝜒)) ▶ (𝜓 → (𝜒
→ 𝜑)) )
| | 4:3: | ⊢ ( (𝜑 ↔ (𝜓 ∧ 𝜒)) ▶ (𝜒 → (𝜓
→ 𝜑)) )
| | qed:4: | ⊢ ((𝜑 ↔ (𝜓 ∧ 𝜒)) → (𝜒 → (𝜓
→ 𝜑)))
|
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ ((𝜑 ↔ (𝜓 ∧ 𝜒)) → (𝜒 → (𝜓 → 𝜑))) |
| |
| Theorem | onfrALTlem2VD 44909* |
Virtual deduction proof of onfrALTlem2 44566.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
onfrALTlem2 44566 is onfrALTlem2VD 44909 without virtual deductions and was
automatically derived from onfrALTlem2VD 44909.
| 1:: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩
𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) ▶ ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩
𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) )
| | 2:1: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩
𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) ▶ 𝑧 ∈ (𝑎 ∩ 𝑦) )
| | 3:2: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩
𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) ▶ 𝑧 ∈ 𝑎 )
| | 4:: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ (𝑎
⊆ On ∧ 𝑎 ≠ ∅) )
| | 5:: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) )
| | 6:5: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ 𝑥 ∈ 𝑎 )
| | 7:4: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ 𝑎 ⊆
On )
| | 8:6,7: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ 𝑥 ∈ On )
| | 9:8: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ Ord 𝑥 )
| | 10:9: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ Tr 𝑥 )
| | 11:1: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩
𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) ▶ 𝑦 ∈ (𝑎 ∩ 𝑥) )
| | 12:11: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩
𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) ▶ 𝑦 ∈ 𝑥 )
| | 13:2: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩
𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) ▶ 𝑧 ∈ 𝑦 )
| | 14:10,12,13: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩
𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) ▶ 𝑧 ∈ 𝑥 )
| | 15:3,14: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩
𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) ▶ 𝑧 ∈ (𝑎 ∩ 𝑥) )
| | 16:13,15: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩
𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) ▶ 𝑧 ∈ ((𝑎 ∩ 𝑥) ∩ 𝑦) )
| | 17:16: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦
) = ∅) ▶ (𝑧 ∈ (𝑎 ∩ 𝑦) → 𝑧 ∈ ((𝑎 ∩ 𝑥) ∩ 𝑦)) )
| | 18:17: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦
) = ∅) ▶ ∀𝑧(𝑧 ∈ (𝑎 ∩ 𝑦) → 𝑧 ∈ ((𝑎 ∩ 𝑥) ∩ 𝑦)) )
| | 19:18: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦
) = ∅) ▶ (𝑎 ∩ 𝑦) ⊆ ((𝑎 ∩ 𝑥) ∩ 𝑦) )
| | 20:: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦
) = ∅) ▶ (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) )
| | 21:20: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦
) = ∅) ▶ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅ )
| | 22:19,21: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦
) = ∅) ▶ (𝑎 ∩ 𝑦) = ∅ )
| | 23:20: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦
) = ∅) ▶ 𝑦 ∈ (𝑎 ∩ 𝑥) )
| | 24:23: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦
) = ∅) ▶ 𝑦 ∈ 𝑎 )
| | 25:22,24: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦
) = ∅) ▶ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅) )
| | 26:25: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥)
∩ 𝑦) = ∅) → (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) )
| | 27:26: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ∀𝑦((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥
) ∩ 𝑦) = ∅) → (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) )
| | 28:27: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ (∃𝑦(𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥
) ∩ 𝑦) = ∅) → ∃𝑦(𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) )
| | 29:: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦
) = ∅ )
| | 30:29: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦(𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥)
∩ 𝑦) = ∅) )
| | 31:28,30: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦(𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅) )
| | qed:31: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅ )
|
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅ ) |
| |
| Theorem | onfrALTlem1VD 44910* |
Virtual deduction proof of onfrALTlem1 44568.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
onfrALTlem1 44568 is onfrALTlem1VD 44910 without virtual deductions and was
automatically derived from onfrALTlem1VD 44910.
| 1:: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧
(𝑎 ∩ 𝑥) = ∅) ▶ (𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) )
| | 2:1: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧
(𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑥(𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) )
| | 3:2: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧
(𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦[𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅)
)
| | 4:: | ⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅
) ↔ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅))
| | 5:4: | ⊢ ∀𝑦([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥)
= ∅) ↔ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅))
| | 6:5: | ⊢ (∃𝑦[𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥)
= ∅) ↔ ∃𝑦(𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅))
| | 7:3,6: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧
(𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦(𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅) )
| | 8:: | ⊢ (∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅ ↔ ∃𝑦(
𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅))
| | qed:7,8: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧
(𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅ )
|
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅ ) |
| |
| Theorem | onfrALTVD 44911 |
Virtual deduction proof of onfrALT 44569.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
onfrALT 44569 is onfrALTVD 44911 without virtual deductions and was
automatically derived from onfrALTVD 44911.
| 1:: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎
∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅ )
| | 2:: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎
∧ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅ )
| | 3:1: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , 𝑥 ∈ 𝑎 ▶
(¬ (𝑎 ∩ 𝑥) = ∅ → ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅) )
| | 4:2: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , 𝑥 ∈ 𝑎 ▶
((𝑎 ∩ 𝑥) = ∅ → ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅) )
| | 5:: | ⊢ ((𝑎 ∩ 𝑥) = ∅ ∨ ¬ (𝑎 ∩ 𝑥) =
∅)
| | 6:5,4,3: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , 𝑥 ∈ 𝑎 ▶
∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅ )
| | 7:6: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ (𝑥 ∈ 𝑎
→ ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅) )
| | 8:7: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ ∀𝑥(𝑥
∈ 𝑎 → ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅) )
| | 9:8: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ (∃𝑥𝑥
∈ 𝑎 → ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅) )
| | 10:: | ⊢ (𝑎 ≠ ∅ ↔ ∃𝑥𝑥 ∈ 𝑎)
| | 11:9,10: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ (𝑎 ≠
∅ → ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅) )
| | 12:: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ (𝑎 ⊆
On ∧ 𝑎 ≠ ∅) )
| | 13:12: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ 𝑎 ≠
∅ )
| | 14:13,11: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ ∃𝑦 ∈
𝑎(𝑎 ∩ 𝑦) = ∅ )
| | 15:14: | ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦 ∈ 𝑎
(𝑎 ∩ 𝑦) = ∅)
| | 16:15: | ⊢ ∀𝑎((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦
∈ 𝑎(𝑎 ∩ 𝑦) = ∅)
| | qed:16: | ⊢ E Fr On
|
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ E Fr
On |
| |
| Theorem | csbeq2gVD 44912 |
Virtual deduction proof of csbeq2 3904.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
csbeq2 3904 is csbeq2gVD 44912 without virtual deductions and was
automatically derived from csbeq2gVD 44912.
| 1:: | ⊢ ( 𝐴 ∈ 𝑉 ▶ 𝐴 ∈ 𝑉 )
| | 2:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (∀𝑥𝐵 = 𝐶 → [𝐴 / 𝑥]
𝐵 = 𝐶) )
| | 3:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴
/ 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) )
| | 4:2,3: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (∀𝑥𝐵 = 𝐶 → ⦋𝐴 / 𝑥
⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) )
| | qed:4: | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝐵 = 𝐶 → ⦋𝐴 / 𝑥⦌
𝐵 = ⦋𝐴 / 𝑥⦌𝐶))
|
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 𝐵 = 𝐶 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) |
| |
| Theorem | csbsngVD 44913 |
Virtual deduction proof of csbsng 4708.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
csbsng 4708 is csbsngVD 44913 without virtual deductions and was automatically
derived from csbsngVD 44913.
| 1:: | ⊢ ( 𝐴 ∈ 𝑉 ▶ 𝐴 ∈ 𝑉 )
| | 2:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝑦 = 𝐵
↔ ⦋𝐴 / 𝑥⦌𝑦 = ⦋𝐴 / 𝑥⦌𝐵) )
| | 3:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌𝑦 = 𝑦 )
| | 4:3: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (⦋𝐴 / 𝑥⦌𝑦 = ⦋𝐴
/ 𝑥⦌𝐵 ↔ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵) )
| | 5:2,4: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝑦 = 𝐵
↔ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵) )
| | 6:5: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ∀𝑦([𝐴 / 𝑥]𝑦
= 𝐵 ↔ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵) )
| | 7:6: | ⊢ ( 𝐴 ∈ 𝑉 ▶ {𝑦 ∣ [𝐴 / 𝑥]𝑦 =
𝐵} = {𝑦 ∣ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵} )
| | 8:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ {𝑦 ∣ [𝐴 / 𝑥]𝑦 =
𝐵} = ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝑦 = 𝐵} )
| | 9:7,8: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝑦
= 𝐵} = {𝑦 ∣ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵} )
| | 10:: | ⊢ {𝐵} = {𝑦 ∣ 𝑦 = 𝐵}
| | 11:10: | ⊢ ∀𝑥{𝐵} = {𝑦 ∣ 𝑦 = 𝐵}
| | 12:1,11: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝐵} = ⦋
𝐴 / 𝑥⦌{𝑦 ∣ 𝑦 = 𝐵} )
| | 13:9,12: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝐵} = {
𝑦 ∣ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵} )
| | 14:: | ⊢ {⦋𝐴 / 𝑥⦌𝐵} = {𝑦 ∣ 𝑦 = ⦋𝐴
/ 𝑥⦌𝐵}
| | 15:13,14: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝐵} = {
⦋𝐴 / 𝑥⦌𝐵} )
| | qed:15: | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝐵} = {⦋
𝐴 / 𝑥⦌𝐵})
|
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝐵} = {⦋𝐴 / 𝑥⦌𝐵}) |
| |
| Theorem | csbxpgVD 44914 |
Virtual deduction proof of csbxp 5785.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
csbxp 5785 is csbxpgVD 44914 without virtual deductions and was
automatically derived from csbxpgVD 44914.
| 1:: | ⊢ ( 𝐴 ∈ 𝑉 ▶ 𝐴 ∈ 𝑉 )
| | 2:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝑤 ∈ 𝐵 ↔
⦋𝐴 / 𝑥⦌𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵) )
| | 3:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌𝑤 = 𝑤 )
| | 4:3: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (⦋𝐴 / 𝑥⦌𝑤 ∈ ⦋𝐴 /
𝑥⦌𝐵 ↔ 𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵) )
| | 5:2,4: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝑤 ∈ 𝐵 ↔ 𝑤
∈ ⦋𝐴 / 𝑥⦌𝐵) )
| | 6:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔
⦋𝐴 / 𝑥⦌𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶) )
| | 7:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌𝑦 = 𝑦 )
| | 8:7: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (⦋𝐴 / 𝑥⦌𝑦 ∈ ⦋𝐴 /
𝑥⦌𝐶 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶) )
| | 9:6,8: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ 𝑦
∈ ⦋𝐴 / 𝑥⦌𝐶) )
| | 10:5,9: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (([𝐴 / 𝑥]𝑤 ∈ 𝐵 ∧
[𝐴 / 𝑥]𝑦 ∈ 𝐶) ↔ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧
𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)) )
| | 11:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧
𝑦 ∈ 𝐶) ↔ ([𝐴 / 𝑥]𝑤 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐶)) )
| | 12:10,11: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧
𝑦 ∈ 𝐶) ↔ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)) )
| | 13:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝑧 = 〈𝑤 ,
𝑦〉 ↔ 𝑧 = 〈𝑤, 𝑦〉) )
| | 14:12,13: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (([𝐴 / 𝑥]𝑧 = 〈𝑤
, 𝑦〉 ∧ [𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑧 = 〈𝑤, 𝑦〉
∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) )
| | 15:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥](𝑧 = 〈𝑤
, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ([𝐴 / 𝑥]𝑧 = 〈𝑤, 𝑦〉
∧ [𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) )
| | 16:14,15: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥](𝑧 = 〈𝑤
, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑧 = 〈𝑤, 𝑦〉 ∧
(𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) )
| | 17:16: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ∀𝑦([𝐴 / 𝑥](𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑧 = 〈𝑤, 𝑦〉 ∧
(𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) )
| | 18:17: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (∃𝑦[𝐴 / 𝑥](𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧
(𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) )
| | 19:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]∃𝑦(𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦[𝐴 / 𝑥](𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) )
| | 20:18,19: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]∃𝑦(𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧
(𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) )
| | 21:20: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ∀𝑤([𝐴 / 𝑥]∃𝑦(
𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦(𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) )
| | 22:21: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (∃𝑤[𝐴 / 𝑥]∃𝑦(
𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤∃𝑦(𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) )
| | 23:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]∃𝑤∃𝑦(
𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤[𝐴 / 𝑥]∃𝑦
(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) )
| | 24:22,23: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]∃𝑤∃𝑦(
𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤∃𝑦(𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) )
| | 25:24: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ∀𝑧([𝐴 / 𝑥]∃𝑤∃
𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤∃𝑦(𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) )
| | 26:25: | ⊢ ( 𝐴 ∈ 𝑉 ▶ {𝑧 ∣ [𝐴 / 𝑥]∃𝑤∃
𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} = {𝑧 ∣ ∃𝑤∃𝑦(
𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))}
)
| | 27:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑤∃
𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} = {𝑧 ∣ [𝐴 / 𝑥]
∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} )
| | 28:26,27: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑤∃
𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} = {𝑧 ∣ ∃𝑤∃𝑦(
𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))}
)
| | 29:: | ⊢ {〈𝑤 , 𝑦〉 ∣ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)}
= {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))}
| | 30:: | ⊢ (𝐵 × 𝐶) = {〈𝑤 , 𝑦〉 ∣ (𝑤 ∈ 𝐵
∧ 𝑦 ∈ 𝐶)}
| | 31:29,30: | ⊢ (𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤
, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))}
| | 32:31: | ⊢ ∀𝑥(𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))}
| | 33:1,32: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) =
⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧
𝑦 ∈ 𝐶))} )
| | 34:28,33: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) =
{𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧
𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))} )
| | 35:: | ⊢ {〈𝑤 , 𝑦〉 ∣ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧
𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)} = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧
(𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))}
| | 36:: | ⊢ (⦋𝐴 / 𝑥⦌𝐵 × ⦋𝐴 / 𝑥⦌𝐶) = {
〈𝑤, 𝑦〉 ∣ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)}
| | 37:35,36: | ⊢ (⦋𝐴 / 𝑥⦌𝐵 × ⦋𝐴 / 𝑥⦌𝐶) = {𝑧
∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧
𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))}
| | 38:34,37: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) =
(⦋𝐴 / 𝑥⦌𝐵 × ⦋𝐴 / 𝑥⦌𝐶) )
| | qed:38: | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) = (
⦋𝐴 / 𝑥⦌𝐵 × ⦋𝐴 / 𝑥⦌𝐶))
|
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 × ⦋𝐴 / 𝑥⦌𝐶)) |
| |
| Theorem | csbresgVD 44915 |
Virtual deduction proof of csbres 6000.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
csbres 6000 is csbresgVD 44915 without virtual deductions and was
automatically derived from csbresgVD 44915.
| 1:: | ⊢ ( 𝐴 ∈ 𝑉 ▶ 𝐴 ∈ 𝑉 )
| | 2:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌V = V )
| | 3:2: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (⦋𝐴 / 𝑥⦌𝐶 × ⦋𝐴 /
𝑥⦌V) = (⦋𝐴 / 𝑥⦌𝐶 × V) )
| | 4:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐶 × V) =
(⦋𝐴 / 𝑥⦌𝐶 × ⦋𝐴 / 𝑥⦌V) )
| | 5:3,4: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐶 × V) =
(⦋𝐴 / 𝑥⦌𝐶 × V) )
| | 6:5: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (⦋𝐴 / 𝑥⦌𝐵 ∩ ⦋𝐴 /
𝑥⦌(𝐶 × V)) =
(⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V)) )
| | 7:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 ×
V)) = (⦋𝐴 / 𝑥⦌𝐵 ∩ ⦋𝐴 / 𝑥⦌(𝐶 × V)) )
| | 8:6,7: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 ×
V)) = (⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V)) )
| | 9:: | ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V))
| | 10:9: | ⊢ ∀𝑥(𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V))
| | 11:1,10: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) =
⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 × V)) )
| | 12:8,11: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶)
= (
⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V)) )
| | 13:: | ⊢ (⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶) = (
⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V))
| | 14:12,13: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) =
(
⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶) )
| | qed:14: | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = (
⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶))
|
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶)) |
| |
| Theorem | csbrngVD 44916 |
Virtual deduction proof of csbrn 6223.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
csbrn 6223 is csbrngVD 44916 without virtual deductions and was
automatically derived from csbrngVD 44916.
| 1:: | ⊢ ( 𝐴 ∈ 𝑉 ▶ 𝐴 ∈ 𝑉 )
| | 2:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]〈𝑤 , 𝑦〉
∈ 𝐵 ↔ ⦋𝐴 / 𝑥⦌〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) )
| | 3:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌〈𝑤 , 𝑦〉 =
〈𝑤, 𝑦〉 )
| | 4:3: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (⦋𝐴 / 𝑥⦌〈𝑤 , 𝑦〉
∈ ⦋𝐴 / 𝑥⦌𝐵 ↔ 〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) )
| | 5:2,4: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]〈𝑤 , 𝑦〉
∈ 𝐵 ↔ 〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) )
| | 6:5: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ∀𝑤([𝐴 / 𝑥]〈𝑤 ,
𝑦〉 ∈ 𝐵 ↔ 〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) )
| | 7:6: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (∃𝑤[𝐴 / 𝑥]〈𝑤 ,
𝑦〉 ∈ 𝐵 ↔ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) )
| | 8:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (∃𝑤[𝐴 / 𝑥]〈𝑤 ,
𝑦〉 ∈ 𝐵 ↔ [𝐴 / 𝑥]∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵) )
| | 9:7,8: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]∃𝑤〈𝑤
, 𝑦〉 ∈ 𝐵 ↔ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) )
| | 10:9: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ∀𝑦([𝐴 / 𝑥]∃𝑤
〈𝑤, 𝑦〉 ∈ 𝐵 ↔ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) )
| | 11:10: | ⊢ ( 𝐴 ∈ 𝑉 ▶ {𝑦 ∣ [𝐴 / 𝑥]∃𝑤〈
𝑤, 𝑦〉 ∈ 𝐵} = {𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵} )
| | 12:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤
〈𝑤, 𝑦〉 ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} )
| | 13:11,12: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤
〈𝑤, 𝑦〉 ∈ 𝐵} = {𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵} )
| | 14:: | ⊢ ran 𝐵 = {𝑦 ∣ ∃𝑤〈𝑤 , 𝑦〉 ∈ 𝐵}
| | 15:14: | ⊢ ∀𝑥ran 𝐵 = {𝑦 ∣ ∃𝑤〈𝑤 , 𝑦〉
∈ 𝐵}
| | 16:1,15: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌ran 𝐵 = ⦋𝐴 /
𝑥⦌{𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} )
| | 17:13,16: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌ran 𝐵 = {𝑦 ∣
∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵} )
| | 18:: | ⊢ ran ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ ∃𝑤〈𝑤
, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵}
| | 19:17,18: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌ran 𝐵 = ran ⦋
𝐴 / 𝑥⦌𝐵 )
| | qed:19: | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌ran 𝐵 = ran ⦋𝐴
/ 𝑥⦌𝐵)
|
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌ran 𝐵 = ran ⦋𝐴 / 𝑥⦌𝐵) |
| |
| Theorem | csbima12gALTVD 44917 |
Virtual deduction proof of csbima12 6097.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
csbima12 6097 is csbima12gALTVD 44917 without virtual deductions and was
automatically derived from csbima12gALTVD 44917.
| 1:: | ⊢ ( 𝐴 ∈ 𝐶 ▶ 𝐴 ∈ 𝐶 )
| | 2:1: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) =
(
⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) )
| | 3:2: | ⊢ ( 𝐴 ∈ 𝐶 ▶
ran ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵)
= ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) )
| | 4:1: | ⊢ ( 𝐴 ∈ 𝐶 ▶
⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵)
= ran ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) )
| | 5:3,4: | ⊢ ( 𝐴 ∈ 𝐶 ▶
⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵)
= ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) )
| | 6:: | ⊢ (𝐹 “ 𝐵) = ran (𝐹 ↾ 𝐵)
| | 7:6: | ⊢ ∀𝑥(𝐹 “ 𝐵) = ran (𝐹 ↾ 𝐵)
| | 8:1,7: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ⦋
𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵) )
| | 9:5,8: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) =
ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) )
| | 10:: | ⊢ (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) = ran
(⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵)
| | 11:9,10: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (
⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) )
| | qed:11: | ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋
𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵))
|
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵)) |
| |
| Theorem | csbunigVD 44918 |
Virtual deduction proof of csbuni 4936.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
csbuni 4936 is csbunigVD 44918 without virtual deductions and was
automatically derived from csbunigVD 44918.
| 1:: | ⊢ ( 𝐴 ∈ 𝑉 ▶ 𝐴 ∈ 𝑉 )
| | 2:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝑧 ∈ 𝑦 ↔ 𝑧
∈ 𝑦) )
| | 3:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ 𝑦
∈ ⦋𝐴 / 𝑥⦌𝐵) )
| | 4:2,3: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (([𝐴 / 𝑥]𝑧 ∈ 𝑦 ∧
[𝐴 / 𝑥]𝑦 ∈ 𝐵) ↔ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)) )
| | 5:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧
𝑦 ∈ 𝐵) ↔ ([𝐴 / 𝑥]𝑧 ∈ 𝑦 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐵)) )
| | 6:4,5: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧
𝑦 ∈ 𝐵) ↔ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)) )
| | 7:6: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ∀𝑦([𝐴 / 𝑥](𝑧 ∈
𝑦 ∧ 𝑦 ∈ 𝐵) ↔ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)) )
| | 8:7: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (∃𝑦[𝐴 / 𝑥](𝑧 ∈
𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)) )
| | 9:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]∃𝑦(𝑧 ∈
𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦[𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) )
| | 10:8,9: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]∃𝑦(𝑧 ∈
𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)) )
| | 11:10: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ∀𝑧([𝐴 / 𝑥]∃𝑦(
𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)) )
| | 12:11: | ⊢ ( 𝐴 ∈ 𝑉 ▶ {𝑧 ∣ [𝐴 / 𝑥]∃𝑦(
𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧
𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)} )
| | 13:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑦(𝑧
∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} = {𝑧 ∣ [𝐴 / 𝑥]∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)}
)
| | 14:12,13: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑦(𝑧
∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧
𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)} )
| | 15:: | ⊢ ∪ 𝐵 = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)}
| | 16:15: | ⊢ ∀𝑥∪ 𝐵 = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈
𝐵)}
| | 17:1,16: | ⊢ ( 𝐴 ∈ 𝑉 ▶ [𝐴 / 𝑥]∪ 𝐵 = {𝑧 ∣
∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} )
| | 18:1,17: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌∪ 𝐵 = ⦋𝐴 /
𝑥⦌{𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} )
| | 19:14,18: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌∪ 𝐵 = {𝑧 ∣
∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)} )
| | 20:: | ⊢ ∪ ⦋𝐴 / 𝑥⦌𝐵 = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦
∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)}
| | 21:19,20: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌∪ 𝐵 = ∪ ⦋𝐴
/ 𝑥⦌𝐵 )
| | qed:21: | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌∪ 𝐵 = ∪ ⦋𝐴 /
𝑥⦌𝐵)
|
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌∪
𝐵 = ∪ ⦋𝐴 / 𝑥⦌𝐵) |
| |
| Theorem | csbfv12gALTVD 44919 |
Virtual deduction proof of csbfv12 6954.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
csbfv12 6954 is csbfv12gALTVD 44919 without virtual deductions and was
automatically derived from csbfv12gALTVD 44919.
| 1:: | ⊢ ( 𝐴 ∈ 𝐶 ▶ 𝐴 ∈ 𝐶 )
| | 2:1: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌{𝑦} = {
𝑦} )
| | 3:1: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹 “ {𝐵
}) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌{𝐵}) )
| | 4:1: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌{𝐵} = {
⦋𝐴 / 𝑥⦌𝐵} )
| | 5:4: | ⊢ ( 𝐴 ∈ 𝐶 ▶ (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴
/ 𝑥⦌{𝐵}) = (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) )
| | 6:3,5: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹 “ {𝐵
}) = (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) )
| | 7:1: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ([𝐴 / 𝑥](𝐹 “ {
𝐵}) = {𝑦} ↔ ⦋𝐴 / 𝑥⦌(𝐹 “ {𝐵}) = ⦋𝐴 / 𝑥⦌{𝑦}) )
| | 8:6,2: | ⊢ ( 𝐴 ∈ 𝐶 ▶ (⦋𝐴 / 𝑥⦌(𝐹 “ {
𝐵}) = ⦋𝐴 / 𝑥⦌{𝑦} ↔ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵})
= {𝑦}) )
| | 9:7,8: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ([𝐴 / 𝑥](𝐹 “ {
𝐵}) = {𝑦} ↔ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) = {𝑦})
)
| | 10:9: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ∀𝑦([𝐴 / 𝑥](𝐹
“ {𝐵}) = {𝑦} ↔ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) =
{𝑦}) )
| | 11:10: | ⊢ ( 𝐴 ∈ 𝐶 ▶ {𝑦 ∣ [𝐴 / 𝑥](𝐹
“ {𝐵}) = {𝑦}} = {𝑦 ∣ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) =
{𝑦}} )
| | 12:1: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌{𝑦 ∣ (𝐹
“ {𝐵}) = {𝑦}} = {𝑦 ∣ [𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}} )
| | 13:11,12: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌{𝑦 ∣ (𝐹
“ {𝐵}) = {𝑦}} = {𝑦 ∣ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) =
{𝑦
}} )
| | 14:13: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ∪ ⦋𝐴 / 𝑥⦌{𝑦 ∣ (
𝐹 “ {𝐵}) = {𝑦}} = ∪ {𝑦 ∣ (⦋𝐴 / 𝑥⦌𝐹 “
{⦋𝐴 / 𝑥⦌𝐵}) =
{𝑦}} )
| | 15:1: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌∪ {𝑦 ∣ (
𝐹 “ {𝐵}) = {𝑦}} = ∪ ⦋𝐴 / 𝑥⦌{𝑦 ∣ (𝐹 “ {𝐵}) =
{𝑦}} )
| | 16:14,15: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌∪ {𝑦 ∣ (
𝐹 “ {𝐵}) = {𝑦}} =
∪ {𝑦 ∣ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) =
{𝑦}} )
| | 17:: | ⊢ (𝐹‘𝐵) =
∪ {𝑦 ∣ (𝐹 “ {𝐵}) =
{𝑦}}
| | 18:17: | ⊢ ∀𝑥(𝐹‘𝐵) = ∪ {𝑦 ∣ (𝐹 “ {𝐵
}) = {𝑦}}
| | 19:1,18: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹‘𝐵)
= ⦋𝐴 / 𝑥⦌∪ {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} )
| | 20:16,19: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹‘𝐵)
= ∪ {𝑦 ∣ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) = {𝑦}} )
| | 21:: | ⊢ (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵) =
∪ {𝑦 ∣ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) = {𝑦}}
| | 22:20,21: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹‘𝐵)
= (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵) )
| | qed:22: | ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) =
(⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵))
|
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵)) |
| |
| Theorem | con5VD 44920 |
Virtual deduction proof of con5 44542.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
con5 44542 is con5VD 44920 without virtual deductions and was automatically
derived from con5VD 44920.
| 1:: | ⊢ ( (𝜑 ↔ ¬ 𝜓) ▶ (𝜑 ↔ ¬ 𝜓) )
| | 2:1: | ⊢ ( (𝜑 ↔ ¬ 𝜓) ▶ (¬ 𝜓 → 𝜑) )
| | 3:2: | ⊢ ( (𝜑 ↔ ¬ 𝜓) ▶ (¬ 𝜑 → ¬ ¬ 𝜓
) )
| | 4:: | ⊢ (𝜓 ↔ ¬ ¬ 𝜓)
| | 5:3,4: | ⊢ ( (𝜑 ↔ ¬ 𝜓) ▶ (¬ 𝜑 → 𝜓) )
| | qed:5: | ⊢ ((𝜑 ↔ ¬ 𝜓) → (¬ 𝜑 → 𝜓))
|
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ ((𝜑 ↔ ¬ 𝜓) → (¬ 𝜑 → 𝜓)) |
| |
| Theorem | relopabVD 44921 |
Virtual deduction proof of relopab 5834.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
relopab 5834 is relopabVD 44921 without virtual deductions and was
automatically derived from relopabVD 44921.
| 1:: | ⊢ ( 𝑦 = 𝑣 ▶ 𝑦 = 𝑣 )
| | 2:1: | ⊢ ( 𝑦 = 𝑣 ▶ 〈𝑥 , 𝑦〉 = 〈𝑥 , 𝑣
〉 )
| | 3:: | ⊢ ( 𝑦 = 𝑣 , 𝑥 = 𝑢 ▶ 𝑥 = 𝑢 )
| | 4:3: | ⊢ ( 𝑦 = 𝑣 , 𝑥 = 𝑢 ▶ 〈𝑥 , 𝑣〉 = 〈
𝑢, 𝑣〉 )
| | 5:2,4: | ⊢ ( 𝑦 = 𝑣 , 𝑥 = 𝑢 ▶ 〈𝑥 , 𝑦〉 = 〈
𝑢, 𝑣〉 )
| | 6:5: | ⊢ ( 𝑦 = 𝑣 , 𝑥 = 𝑢 ▶ (𝑧 = 〈𝑥 , 𝑦
〉 → 𝑧 = 〈𝑢, 𝑣〉) )
| | 7:6: | ⊢ ( 𝑦 = 𝑣 ▶ (𝑥 = 𝑢 → (𝑧 = 〈𝑥 ,
𝑦〉 → 𝑧 = 〈𝑢, 𝑣〉)) )
| | 8:7: | ⊢ (𝑦 = 𝑣 → (𝑥 = 𝑢 → (𝑧 = 〈𝑥 , 𝑦
〉 → 𝑧 = 〈𝑢, 𝑣〉)))
| | 9:8: | ⊢ (∃𝑣𝑦 = 𝑣 → ∃𝑣(𝑥 = 𝑢 → (𝑧
= 〈𝑥, 𝑦〉 → 𝑧 = 〈𝑢, 𝑣〉)))
| | 90:: | ⊢ (𝑣 = 𝑦 ↔ 𝑦 = 𝑣)
| | 91:90: | ⊢ (∃𝑣𝑣 = 𝑦 ↔ ∃𝑣𝑦 = 𝑣)
| | 92:: | ⊢ ∃𝑣𝑣 = 𝑦
| | 10:91,92: | ⊢ ∃𝑣𝑦 = 𝑣
| | 11:9,10: | ⊢ ∃𝑣(𝑥 = 𝑢 → (𝑧 = 〈𝑥 , 𝑦〉 →
𝑧 = 〈𝑢, 𝑣〉))
| | 12:11: | ⊢ (𝑥 = 𝑢 → ∃𝑣(𝑧 = 〈𝑥 , 𝑦〉 →
𝑧 = 〈𝑢, 𝑣〉))
| | 13:: | ⊢ (∃𝑣(𝑧 = 〈𝑥 , 𝑦〉 → 𝑧 = 〈𝑢
, 𝑣〉) → (𝑧 = 〈𝑥, 𝑦〉 → ∃𝑣𝑧 = 〈𝑢, 𝑣〉))
| | 14:12,13: | ⊢ (𝑥 = 𝑢 → (𝑧 = 〈𝑥 , 𝑦〉 → ∃𝑣
𝑧 = 〈𝑢, 𝑣〉))
| | 15:14: | ⊢ (∃𝑢𝑥 = 𝑢 → ∃𝑢(𝑧 = 〈𝑥 , 𝑦
〉 → ∃𝑣𝑧 = 〈𝑢, 𝑣〉))
| | 150:: | ⊢ (𝑢 = 𝑥 ↔ 𝑥 = 𝑢)
| | 151:150: | ⊢ (∃𝑢𝑢 = 𝑥 ↔ ∃𝑢𝑥 = 𝑢)
| | 152:: | ⊢ ∃𝑢𝑢 = 𝑥
| | 16:151,152: | ⊢ ∃𝑢𝑥 = 𝑢
| | 17:15,16: | ⊢ ∃𝑢(𝑧 = 〈𝑥 , 𝑦〉 → ∃𝑣𝑧 = 〈
𝑢, 𝑣〉)
| | 18:17: | ⊢ (𝑧 = 〈𝑥 , 𝑦〉 → ∃𝑢∃𝑣𝑧 = 〈
𝑢, 𝑣〉)
| | 19:18: | ⊢ (∃𝑦𝑧 = 〈𝑥 , 𝑦〉 → ∃𝑦∃𝑢
∃𝑣𝑧 = 〈𝑢, 𝑣〉)
| | 20:: | ⊢ (∃𝑦∃𝑢∃𝑣𝑧 = 〈𝑢 , 𝑣〉 →
∃𝑢∃𝑣𝑧 = 〈𝑢, 𝑣〉)
| | 21:19,20: | ⊢ (∃𝑦𝑧 = 〈𝑥 , 𝑦〉 → ∃𝑢∃𝑣𝑧
= 〈𝑢, 𝑣〉)
| | 22:21: | ⊢ (∃𝑥∃𝑦𝑧 = 〈𝑥 , 𝑦〉 → ∃𝑥
∃𝑢∃𝑣𝑧 = 〈𝑢, 𝑣〉)
| | 23:: | ⊢ (∃𝑥∃𝑢∃𝑣𝑧 = 〈𝑢 , 𝑣〉 →
∃𝑢∃𝑣𝑧 = 〈𝑢, 𝑣〉)
| | 24:22,23: | ⊢ (∃𝑥∃𝑦𝑧 = 〈𝑥 , 𝑦〉 → ∃𝑢
∃𝑣𝑧 = 〈𝑢, 𝑣〉)
| | 25:24: | ⊢ {𝑧 ∣ ∃𝑥∃𝑦𝑧 = 〈𝑥 , 𝑦〉} ⊆
{𝑧 ∣ ∃𝑢∃𝑣𝑧 = 〈𝑢, 𝑣〉}
| | 26:: | ⊢ 𝑥 ∈ V
| | 27:: | ⊢ 𝑦 ∈ V
| | 28:26,27: | ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V)
| | 29:28: | ⊢ (𝑧 = 〈𝑥 , 𝑦〉 ↔ (𝑧 = 〈𝑥 , 𝑦
〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
| | 30:29: | ⊢ (∃𝑦𝑧 = 〈𝑥 , 𝑦〉 ↔ ∃𝑦(𝑧 =
〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
| | 31:30: | ⊢ (∃𝑥∃𝑦𝑧 = 〈𝑥 , 𝑦〉 ↔ ∃𝑥
∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
| | 32:31: | ⊢ {𝑧 ∣ ∃𝑥∃𝑦𝑧 = 〈𝑥 , 𝑦〉} = {
𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))}
| | 320:25,32: | ⊢ {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥 , 𝑦〉 ∧
(𝑥 ∈ V ∧ 𝑦 ∈ V))} ⊆ {𝑧 ∣ ∃𝑢∃𝑣𝑧 = 〈𝑢, 𝑣〉}
| | 33:: | ⊢ 𝑢 ∈ V
| | 34:: | ⊢ 𝑣 ∈ V
| | 35:33,34: | ⊢ (𝑢 ∈ V ∧ 𝑣 ∈ V)
| | 36:35: | ⊢ (𝑧 = 〈𝑢 , 𝑣〉 ↔ (𝑧 = 〈𝑢 , 𝑣
〉 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
| | 37:36: | ⊢ (∃𝑣𝑧 = 〈𝑢 , 𝑣〉 ↔ ∃𝑣(𝑧 =
〈𝑢, 𝑣〉 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
| | 38:37: | ⊢ (∃𝑢∃𝑣𝑧 = 〈𝑢 , 𝑣〉 ↔ ∃𝑢
∃𝑣(𝑧 = 〈𝑢, 𝑣〉 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
| | 39:38: | ⊢ {𝑧 ∣ ∃𝑢∃𝑣𝑧 = 〈𝑢 , 𝑣〉} = {
𝑧 ∣ ∃𝑢∃𝑣(𝑧 = 〈𝑢, 𝑣〉 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))}
| | 40:320,39: | ⊢ {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥 , 𝑦〉 ∧
(𝑥 ∈ V ∧ 𝑦 ∈ V))} ⊆ {𝑧 ∣ ∃𝑢∃𝑣(𝑧 = 〈𝑢, 𝑣〉 ∧
(𝑢 ∈ V ∧ 𝑣 ∈ V))}
| | 41:: | ⊢ {〈𝑥 , 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V
)} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))
}
| | 42:: | ⊢ {〈𝑢 , 𝑣〉 ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V
)} = {𝑧 ∣ ∃𝑢∃𝑣(𝑧 = 〈𝑢, 𝑣〉 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))
}
| | 43:40,41,42: | ⊢ {〈𝑥 , 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V
)} ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V)}
| | 44:: | ⊢ {〈𝑢 , 𝑣〉 ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V
)} = (V × V)
| | 45:43,44: | ⊢ {〈𝑥 , 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V
)} ⊆ (V × V)
| | 46:28: | ⊢ (𝜑 → (𝑥 ∈ V ∧ 𝑦 ∈ V))
| | 47:46: | ⊢ {〈𝑥 , 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥 , 𝑦〉
∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)}
| | 48:45,47: | ⊢ {〈𝑥 , 𝑦〉 ∣ 𝜑} ⊆ (V × V)
| | qed:48: | ⊢ Rel {〈𝑥 , 𝑦〉 ∣ 𝜑}
|
(Contributed by Alan Sare, 9-Jul-2013.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ Rel
{〈𝑥, 𝑦〉 ∣ 𝜑} |
| |
| Theorem | 19.41rgVD 44922 |
Virtual deduction proof of 19.41rg 44570.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. 19.41rg 44570
is 19.41rgVD 44922 without virtual deductions and was automatically derived
from 19.41rgVD 44922. (Contributed by Alan Sare, 8-Feb-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ (𝜓 → (𝜑 → (𝜑 ∧ 𝜓)))
| | 2:1: | ⊢ ((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑 → (
𝜑 ∧ 𝜓))))
| | 3:2: | ⊢ ∀𝑥((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑
→ (𝜑 ∧ 𝜓))))
| | 4:3: | ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥𝜓 →
∀𝑥(𝜑 → (𝜑 ∧ 𝜓))))
| | 5:: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) ▶ ∀𝑥(𝜓
→ ∀𝑥𝜓) )
| | 6:4,5: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) ▶ (∀𝑥𝜓
→ ∀𝑥(𝜑 → (𝜑 ∧ 𝜓))) )
| | 7:: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) , ∀𝑥𝜓 ▶
∀𝑥𝜓 )
| | 8:6,7: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) , ∀𝑥𝜓 ▶
∀𝑥(𝜑 → (𝜑 ∧ 𝜓)) )
| | 9:8: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) , ∀𝑥𝜓 ▶
(∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓)) )
| | 10:9: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) ▶ (∀𝑥𝜓
→ (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) )
| | 11:5: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) ▶ (𝜓 → ∀
𝑥𝜓) )
| | 12:10,11: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) ▶ (𝜓 → (
∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) )
| | 13:12: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) ▶ (∃𝑥𝜑
→ (𝜓 → ∃𝑥(𝜑 ∧ 𝜓))) )
| | 14:13: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) ▶ ((∃𝑥
𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) )
| | qed:14: | ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑
∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓)))
|
|
| ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓))) |
| |
| Theorem | 2pm13.193VD 44923 |
Virtual deduction proof of 2pm13.193 44572.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
2pm13.193 44572 is 2pm13.193VD 44923 without virtual deductions and was
automatically derived from 2pm13.193VD 44923. (Contributed by Alan Sare,
8-Feb-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) )
| | 2:1: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) )
| | 3:2: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ 𝑥 = 𝑢 )
| | 4:1: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑 )
| | 5:3,4: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ 𝑥 = 𝑢) )
| | 6:5: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ ([𝑣 / 𝑦]𝜑 ∧ 𝑥 = 𝑢) )
| | 7:6: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ [𝑣 / 𝑦]𝜑 )
| | 8:2: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ 𝑦 = 𝑣 )
| | 9:7,8: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ ([𝑣 / 𝑦]𝜑 ∧ 𝑦 = 𝑣) )
| | 10:9: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ (𝜑 ∧ 𝑦 = 𝑣) )
| | 11:10: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ 𝜑 )
| | 12:2,11: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) )
| | 13:12: | ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣
/ 𝑦]𝜑) → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
| | 14:: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ ((
𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) )
| | 15:14: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ (𝑥
= 𝑢 ∧ 𝑦 = 𝑣) )
| | 16:15: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ 𝑦 =
𝑣 )
| | 17:14: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ 𝜑
)
| | 18:16,17: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ (
𝜑 ∧ 𝑦 = 𝑣) )
| | 19:18: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ ([
𝑣 / 𝑦]𝜑 ∧ 𝑦 = 𝑣) )
| | 20:15: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ 𝑥 =
𝑢 )
| | 21:19: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ [𝑣
/ 𝑦]𝜑 )
| | 22:20,21: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ ([
𝑣 / 𝑦]𝜑 ∧ 𝑥 = 𝑢) )
| | 23:22: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ ([
𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ 𝑥 = 𝑢) )
| | 24:23: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ [𝑢
/ 𝑥][𝑣 / 𝑦]𝜑 )
| | 25:15,24: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ ((
𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) )
| | 26:25: | ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) → ((𝑥
= 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| | qed:13,26: | ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣
/ 𝑦]𝜑) ↔ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
|
|
| ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) |
| |
| Theorem | hbimpgVD 44924 |
Virtual deduction proof of hbimpg 44574.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbimpg 44574
is hbimpgVD 44924 without virtual deductions and was automatically derived
from hbimpgVD 44924. (Contributed by Alan Sare, 8-Feb-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 →
∀𝑥𝜓)) )
| | 2:1: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ ∀𝑥(𝜑 → ∀𝑥𝜑) )
| | 3:: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)), ¬ 𝜑 ▶ ¬ 𝜑 )
| | 4:2: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ ∀𝑥(¬ 𝜑 → ∀𝑥¬ 𝜑) )
| | 5:4: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ (¬ 𝜑 → ∀𝑥¬ 𝜑) )
| | 6:3,5: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)), ¬ 𝜑 ▶ ∀𝑥¬ 𝜑 )
| | 7:: | ⊢ (¬ 𝜑 → (𝜑 → 𝜓))
| | 8:7: | ⊢ (∀𝑥¬ 𝜑 → ∀𝑥(𝜑 → 𝜓))
| | 9:6,8: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)), ¬ 𝜑 ▶ ∀𝑥(𝜑 → 𝜓) )
| | 10:9: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ (¬ 𝜑 → ∀𝑥(𝜑 → 𝜓)) )
| | 11:: | ⊢ (𝜓 → (𝜑 → 𝜓))
| | 12:11: | ⊢ (∀𝑥𝜓 → ∀𝑥(𝜑 → 𝜓))
| | 13:1: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ ∀𝑥(𝜓 → ∀𝑥𝜓) )
| | 14:13: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ (𝜓 → ∀𝑥𝜓) )
| | 15:14,12: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ (𝜓 → ∀𝑥(𝜑 → 𝜓)) )
| | 16:10,15: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ ((¬ 𝜑 ∨ 𝜓) → ∀𝑥(𝜑 → 𝜓)) )
| | 17:: | ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓))
| | 18:16,17: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ ((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) )
| | 19:: | ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥∀𝑥(
𝜑 → ∀𝑥𝜑))
| | 20:: | ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → ∀𝑥∀𝑥(
𝜓 → ∀𝑥𝜓))
| | 21:19,20: | ⊢ ((∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) → ∀𝑥(∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 →
∀𝑥𝜓)))
| | 22:21,18: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ ∀𝑥((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) )
| | qed:22: | ⊢ ((∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) → ∀𝑥((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)))
|
|
| ⊢
((∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)) → ∀𝑥((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓))) |
| |
| Theorem | hbalgVD 44925 |
Virtual deduction proof of hbalg 44575.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbalg 44575
is hbalgVD 44925 without virtual deductions and was automatically derived
from hbalgVD 44925. (Contributed by Alan Sare, 8-Feb-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ ( ∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦(𝜑
→ ∀𝑥𝜑) )
| | 2:1: | ⊢ ( ∀𝑦(𝜑 → ∀𝑥𝜑) ▶ (∀𝑦𝜑
→ ∀𝑦∀𝑥𝜑) )
| | 3:: | ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑)
| | 4:2,3: | ⊢ ( ∀𝑦(𝜑 → ∀𝑥𝜑) ▶ (∀𝑦𝜑
→ ∀𝑥∀𝑦𝜑) )
| | 5:: | ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦∀𝑦(
𝜑 → ∀𝑥𝜑))
| | 6:5,4: | ⊢ ( ∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦(∀
𝑦𝜑 → ∀𝑥∀𝑦𝜑) )
| | qed:6: | ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦
𝜑 → ∀𝑥∀𝑦𝜑))
|
|
| ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) |
| |
| Theorem | hbexgVD 44926 |
Virtual deduction proof of hbexg 44576.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbexg 44576
is hbexgVD 44926 without virtual deductions and was automatically derived
from hbexgVD 44926. (Contributed by Alan Sare, 8-Feb-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
∀𝑦(𝜑 → ∀𝑥𝜑) )
| | 2:1: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦
∀𝑥(𝜑 → ∀𝑥𝜑) )
| | 3:2: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
(𝜑 → ∀𝑥𝜑) )
| | 4:3: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
(¬ 𝜑 → ∀𝑥¬ 𝜑) )
| | 5:: | ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ↔ ∀𝑦
∀𝑥(𝜑 → ∀𝑥𝜑))
| | 6:: | ⊢ (∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑦
∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑))
| | 7:5: | ⊢ (∀𝑦∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ↔
∀𝑦∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑))
| | 8:5,6,7: | ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦
∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑))
| | 9:8,4: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦
∀𝑥(¬ 𝜑 → ∀𝑥¬ 𝜑) )
| | 10:9: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
∀𝑦(¬ 𝜑 → ∀𝑥¬ 𝜑) )
| | 11:10: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦
(¬ 𝜑 → ∀𝑥¬ 𝜑) )
| | 12:11: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦
(∀𝑦¬ 𝜑 → ∀𝑥∀𝑦¬ 𝜑) )
| | 13:12: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ (∀
𝑦¬ 𝜑 → ∀𝑥∀𝑦¬ 𝜑) )
| | 14:: | ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥
∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑))
| | 15:13,14: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
(∀𝑦¬ 𝜑 → ∀𝑥∀𝑦¬ 𝜑) )
| | 16:15: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
(¬ ∀𝑦¬ 𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑) )
| | 17:16: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ (¬
∀𝑦¬ 𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑) )
| | 18:: | ⊢ (∃𝑦𝜑 ↔ ¬ ∀𝑦¬ 𝜑)
| | 19:17,18: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ (∃
𝑦𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑) )
| | 20:18: | ⊢ (∀𝑥∃𝑦𝜑 ↔ ∀𝑥¬ ∀𝑦¬ 𝜑)
| | 21:19,20: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ (∃
𝑦𝜑 → ∀𝑥∃𝑦𝜑) )
| | 22:8,21: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦
(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) )
| | 23:14,22: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
∀𝑦(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) )
| | qed:23: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
∀𝑦(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) )
|
|
| ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥∀𝑦(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑)) |
| |
| Theorem | ax6e2eqVD 44927* |
The following User's Proof is a Virtual Deduction proof (see wvd1 44589)
completed automatically by a Metamath tools program invoking mmj2 and
the Metamath Proof Assistant. ax6e2eq 44577 is ax6e2eqVD 44927 without virtual
deductions and was automatically derived from ax6e2eqVD 44927.
(Contributed by Alan Sare, 25-Mar-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∀𝑥𝑥 = 𝑦 )
| | 2:: | ⊢ ( ∀𝑥𝑥 = 𝑦 , 𝑥 = 𝑢 ▶ 𝑥 = 𝑢 )
| | 3:1: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ 𝑥 = 𝑦 )
| | 4:2,3: | ⊢ ( ∀𝑥𝑥 = 𝑦 , 𝑥 = 𝑢 ▶ 𝑦 = 𝑢 )
| | 5:2,4: | ⊢ ( ∀𝑥𝑥 = 𝑦 , 𝑥 = 𝑢 ▶ (𝑥 = 𝑢 ∧ 𝑦
= 𝑢) )
| | 6:5: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ (𝑥 = 𝑢 → (𝑥 = 𝑢 ∧
𝑦 = 𝑢)) )
| | 7:6: | ⊢ (∀𝑥𝑥 = 𝑦 → (𝑥 = 𝑢 → (𝑥 = 𝑢 ∧ 𝑦
= 𝑢)))
| | 8:7: | ⊢ (∀𝑥∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑢 → (
𝑥 = 𝑢 ∧ 𝑦 = 𝑢)))
| | 9:: | ⊢ (∀𝑥𝑥 = 𝑦 ↔ ∀𝑥∀𝑥𝑥 = 𝑦)
| | 10:8,9: | ⊢ (∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑢 → (𝑥 = 𝑢
∧ 𝑦 = 𝑢)))
| | 11:1,10: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∀𝑥(𝑥 = 𝑢 → (𝑥 =
𝑢 ∧ 𝑦 = 𝑢)) )
| | 12:11: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ (∃𝑥𝑥 = 𝑢 → ∃𝑥
(𝑥 = 𝑢 ∧ 𝑦 = 𝑢)) )
| | 13:: | ⊢ ∃𝑥𝑥 = 𝑢
| | 14:13,12: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢
) )
| | 140:14: | ⊢ (∀𝑥𝑥 = 𝑦 → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢)
)
| | 141:140: | ⊢ (∀𝑥𝑥 = 𝑦 → ∀𝑥∃𝑥(𝑥 = 𝑢 ∧ 𝑦
= 𝑢))
| | 15:1,141: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∀𝑥∃𝑥(𝑥 = 𝑢 ∧
𝑦 = 𝑢) )
| | 16:1,15: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∀𝑦∃𝑥(𝑥 = 𝑢 ∧
𝑦 = 𝑢) )
| | 17:16: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∃𝑦∃𝑥(𝑥 = 𝑢 ∧
𝑦 = 𝑢) )
| | 18:17: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∃𝑥∃𝑦(𝑥 = 𝑢 ∧
𝑦 = 𝑢) )
| | 19:: | ⊢ ( 𝑢 = 𝑣 ▶ 𝑢 = 𝑣 )
| | 20:: | ⊢ ( 𝑢 = 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ▶ (𝑥 =
𝑢 ∧ 𝑦 = 𝑢) )
| | 21:20: | ⊢ ( 𝑢 = 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ▶ 𝑦 = 𝑢
)
| | 22:19,21: | ⊢ ( 𝑢 = 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ▶ 𝑦 = 𝑣
)
| | 23:20: | ⊢ ( 𝑢 = 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ▶ 𝑥 = 𝑢
)
| | 24:22,23: | ⊢ ( 𝑢 = 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ▶ (𝑥 =
𝑢 ∧ 𝑦 = 𝑣) )
| | 25:24: | ⊢ ( 𝑢 = 𝑣 ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → (
𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| | 26:25: | ⊢ ( 𝑢 = 𝑣 ▶ ∀𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑢)
→ (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| | 27:26: | ⊢ ( 𝑢 = 𝑣 ▶ (∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑢)
→ ∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| | 28:27: | ⊢ ( 𝑢 = 𝑣 ▶ ∀𝑥(∃𝑦(𝑥 = 𝑢 ∧ 𝑦 =
𝑢) → ∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| | 29:28: | ⊢ ( 𝑢 = 𝑣 ▶ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 =
𝑢) → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| | 30:29: | ⊢ (𝑢 = 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑢
) → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))
| | 31:18,30: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ (𝑢 = 𝑣 → ∃𝑥∃𝑦
(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| | qed:31: | ⊢ (∀𝑥𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃𝑦(
𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))
|
|
| ⊢ (∀𝑥 𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) |
| |
| Theorem | ax6e2ndVD 44928* |
The following User's Proof is a Virtual Deduction proof (see wvd1 44589)
completed automatically by a Metamath tools program invoking mmj2 and
the Metamath Proof Assistant. ax6e2nd 44578 is ax6e2ndVD 44928 without virtual
deductions and was automatically derived from ax6e2ndVD 44928.
(Contributed by Alan Sare, 25-Mar-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ ∃𝑦𝑦 = 𝑣
| | 2:: | ⊢ 𝑢 ∈ V
| | 3:1,2: | ⊢ (𝑢 ∈ V ∧ ∃𝑦𝑦 = 𝑣)
| | 4:3: | ⊢ ∃𝑦(𝑢 ∈ V ∧ 𝑦 = 𝑣)
| | 5:: | ⊢ (𝑢 ∈ V ↔ ∃𝑥𝑥 = 𝑢)
| | 6:5: | ⊢ ((𝑢 ∈ V ∧ 𝑦 = 𝑣) ↔ (∃𝑥𝑥 =
𝑢 ∧ 𝑦 = 𝑣))
| | 7:6: | ⊢ (∃𝑦(𝑢 ∈ V ∧ 𝑦 = 𝑣) ↔ ∃𝑦
(∃𝑥𝑥 = 𝑢 ∧ 𝑦 = 𝑣))
| | 8:4,7: | ⊢ ∃𝑦(∃𝑥𝑥 = 𝑢 ∧ 𝑦 = 𝑣)
| | 9:: | ⊢ (𝑧 = 𝑣 → ∀𝑥𝑧 = 𝑣)
| | 10:: | ⊢ (𝑦 = 𝑣 → ∀𝑧𝑦 = 𝑣)
| | 11:: | ⊢ ( 𝑧 = 𝑦 ▶ 𝑧 = 𝑦 )
| | 12:11: | ⊢ ( 𝑧 = 𝑦 ▶ (𝑧 = 𝑣 ↔ 𝑦 = 𝑣) )
| | 120:11: | ⊢ (𝑧 = 𝑦 → (𝑧 = 𝑣 ↔ 𝑦 = 𝑣))
| | 13:9,10,120: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → (𝑦 = 𝑣 → ∀𝑥𝑦
= 𝑣))
| | 14:: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ¬ ∀𝑥𝑥 = 𝑦 )
| | 15:14,13: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ (𝑦 = 𝑣 → ∀𝑥
𝑦 = 𝑣) )
| | 16:15: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → (𝑦 = 𝑣 → ∀𝑥𝑦
= 𝑣))
| | 17:16: | ⊢ (∀𝑥¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑦 = 𝑣
→ ∀𝑥𝑦 = 𝑣))
| | 18:: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥¬ ∀𝑥𝑥 = 𝑦
)
| | 19:17,18: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑦 = 𝑣 → ∀
𝑥𝑦 = 𝑣))
| | 20:14,19: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ∀𝑥(𝑦 = 𝑣 →
∀𝑥𝑦 = 𝑣) )
| | 21:20: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ((∃𝑥𝑥 = 𝑢
∧ 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| | 22:21: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ((∃𝑥𝑥 = 𝑢 ∧
𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))
| | 23:22: | ⊢ (∀𝑦¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦((∃𝑥
𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))
| | 24:: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦¬ ∀𝑥𝑥 = 𝑦
)
| | 25:23,24: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦((∃𝑥𝑥 =
𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))
| | 26:14,25: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ∀𝑦((∃𝑥𝑥
= 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| | 27:26: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ (∃𝑦(∃𝑥𝑥
= 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| | 28:8,27: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ∃𝑦∃𝑥(𝑥 =
𝑢 ∧ 𝑦 = 𝑣) )
| | 29:28: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ∃𝑥∃𝑦(𝑥 =
𝑢 ∧ 𝑦 = 𝑣) )
| | qed:29: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∃𝑥∃𝑦(𝑥 = 𝑢
∧ 𝑦 = 𝑣))
|
|
| ⊢ (¬
∀𝑥 𝑥 = 𝑦 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
| |
| Theorem | ax6e2ndeqVD 44929* |
The following User's Proof is a Virtual Deduction proof (see wvd1 44589)
completed automatically by a Metamath tools program invoking mmj2 and
the Metamath Proof Assistant. ax6e2eq 44577 is ax6e2ndeqVD 44929 without virtual
deductions and was automatically derived from ax6e2ndeqVD 44929.
(Contributed by Alan Sare, 25-Mar-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ ( 𝑢 ≠ 𝑣 ▶ 𝑢 ≠ 𝑣 )
| | 2:: | ⊢ ( 𝑢 ≠ 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ▶ (
𝑥 = 𝑢 ∧ 𝑦 = 𝑣) )
| | 3:2: | ⊢ ( 𝑢 ≠ 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ▶ 𝑥
= 𝑢 )
| | 4:1,3: | ⊢ ( 𝑢 ≠ 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ▶ 𝑥
≠ 𝑣 )
| | 5:2: | ⊢ ( 𝑢 ≠ 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ▶ 𝑦
= 𝑣 )
| | 6:4,5: | ⊢ ( 𝑢 ≠ 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ▶ 𝑥
≠ 𝑦 )
| | 7:: | ⊢ (∀𝑥𝑥 = 𝑦 → 𝑥 = 𝑦)
| | 8:7: | ⊢ (¬ 𝑥 = 𝑦 → ¬ ∀𝑥𝑥 = 𝑦)
| | 9:: | ⊢ (¬ 𝑥 = 𝑦 ↔ 𝑥 ≠ 𝑦)
| | 10:8,9: | ⊢ (𝑥 ≠ 𝑦 → ¬ ∀𝑥𝑥 = 𝑦)
| | 11:6,10: | ⊢ ( 𝑢 ≠ 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ▶
¬ ∀𝑥𝑥 = 𝑦 )
| | 12:11: | ⊢ ( 𝑢 ≠ 𝑣 ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣)
→ ¬ ∀𝑥𝑥 = 𝑦) )
| | 13:12: | ⊢ ( 𝑢 ≠ 𝑣 ▶ ∀𝑥((𝑥 = 𝑢 ∧ 𝑦 =
𝑣) → ¬ ∀𝑥𝑥 = 𝑦) )
| | 14:13: | ⊢ ( 𝑢 ≠ 𝑣 ▶ (∃𝑥(𝑥 = 𝑢 ∧ 𝑦 =
𝑣) → ∃𝑥¬ ∀𝑥𝑥 = 𝑦) )
| | 15:: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥¬ ∀𝑥𝑥 = 𝑦
)
| | 19:15: | ⊢ (∃𝑥¬ ∀𝑥𝑥 = 𝑦 ↔ ¬ ∀𝑥𝑥 =
𝑦)
| | 20:14,19: | ⊢ ( 𝑢 ≠ 𝑣 ▶ (∃𝑥(𝑥 = 𝑢 ∧ 𝑦 =
𝑣) → ¬ ∀𝑥𝑥 = 𝑦) )
| | 21:20: | ⊢ ( 𝑢 ≠ 𝑣 ▶ ∀𝑦(∃𝑥(𝑥 = 𝑢 ∧
𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦) )
| | 22:21: | ⊢ ( 𝑢 ≠ 𝑣 ▶ (∃𝑦∃𝑥(𝑥 = 𝑢 ∧
𝑦 = 𝑣) → ∃𝑦¬ ∀𝑥𝑥 = 𝑦) )
| | 23:: | ⊢ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ↔ ∃
𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))
| | 24:22,23: | ⊢ ( 𝑢 ≠ 𝑣 ▶ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧
𝑦 = 𝑣) → ∃𝑦¬ ∀𝑥𝑥 = 𝑦) )
| | 25:: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦¬ ∀𝑥𝑥 = 𝑦
)
| | 26:25: | ⊢ (∃𝑦¬ ∀𝑥𝑥 = 𝑦 → ∃𝑦∀𝑦¬
∀𝑥𝑥 = 𝑦)
| | 260:: | ⊢ (∀𝑦¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦∀𝑦¬
∀𝑥𝑥 = 𝑦)
| | 27:260: | ⊢ (∃𝑦∀𝑦¬ ∀𝑥𝑥 = 𝑦 ↔ ∀𝑦¬
∀𝑥𝑥 = 𝑦)
| | 270:26,27: | ⊢ (∃𝑦¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦¬ ∀𝑥
𝑥 = 𝑦)
| | 28:: | ⊢ (∀𝑦¬ ∀𝑥𝑥 = 𝑦 → ¬ ∀𝑥𝑥 = 𝑦
)
| | 29:270,28: | ⊢ (∃𝑦¬ ∀𝑥𝑥 = 𝑦 → ¬ ∀𝑥𝑥 = 𝑦
)
| | 30:24,29: | ⊢ ( 𝑢 ≠ 𝑣 ▶ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧
𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦) )
| | 31:30: | ⊢ ( 𝑢 ≠ 𝑣 ▶ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧
𝑦 = 𝑣) → (¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣)) )
| | 32:31: | ⊢ (𝑢 ≠ 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦
= 𝑣) → (¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣)))
| | 33:: | ⊢ ( 𝑢 = 𝑣 ▶ 𝑢 = 𝑣 )
| | 34:33: | ⊢ ( 𝑢 = 𝑣 ▶ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦
= 𝑣) → 𝑢 = 𝑣) )
| | 35:34: | ⊢ ( 𝑢 = 𝑣 ▶ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦
= 𝑣) → (¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣)) )
| | 36:35: | ⊢ (𝑢 = 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 =
𝑣) → (¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣)))
| | 37:: | ⊢ (𝑢 = 𝑣 ∨ 𝑢 ≠ 𝑣)
| | 38:32,36,37: | ⊢ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (
¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣))
| | 39:: | ⊢ (∀𝑥𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃𝑦
(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))
| | 40:: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∃𝑥∃𝑦(𝑥 = 𝑢
∧ 𝑦 = 𝑣))
| | 41:40: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃
𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))
| | 42:: | ⊢ (∀𝑥𝑥 = 𝑦 ∨ ¬ ∀𝑥𝑥 = 𝑦)
| | 43:39,41,42: | ⊢ (𝑢 = 𝑣 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣
))
| | 44:40,43: | ⊢ ((¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣) → ∃𝑥
∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))
| | qed:38,44: | ⊢ ((¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣) ↔ ∃𝑥
∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))
|
|
| ⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) ↔ ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
| |
| Theorem | 2sb5ndVD 44930* |
The following User's Proof is a Virtual Deduction proof (see wvd1 44589)
completed automatically by a Metamath tools program invoking mmj2 and
the Metamath Proof Assistant. 2sb5nd 44580 is 2sb5ndVD 44930 without virtual
deductions and was automatically derived from 2sb5ndVD 44930.
(Contributed by Alan Sare, 30-Apr-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
| | 2:1: | ⊢ (∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 /
𝑥][𝑣 / 𝑦]𝜑) ↔ ∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
| | 3:: | ⊢ ([𝑣 / 𝑦]𝜑 → ∀𝑦[𝑣 / 𝑦]𝜑)
| | 4:3: | ⊢ [𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 → ∀𝑦[𝑣
/ 𝑦]𝜑)
| | 5:4: | ⊢ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → [𝑢 / 𝑥]
∀𝑦[𝑣 / 𝑦]𝜑)
| | 6:: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ¬ ∀𝑥𝑥 = 𝑦 )
| | 7:: | ⊢ (∀𝑦𝑦 = 𝑥 → ∀𝑥𝑥 = 𝑦)
| | 8:7: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ¬ ∀𝑦𝑦 = 𝑥)
| | 9:6,8: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ¬ ∀𝑦𝑦 = 𝑥 )
| | 10:9: | ⊢ ([𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑 ↔ ∀
𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
| | 11:5,10: | ⊢ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢
/ 𝑥][𝑣 / 𝑦]𝜑)
| | 12:11: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ([𝑢 / 𝑥][𝑣 /
𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| | 13:: | ⊢ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑥[𝑢
/ 𝑥][𝑣 / 𝑦]𝜑)
| | 14:: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∀𝑥𝑥 = 𝑦 )
| | 15:14: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ (∀𝑥[𝑢 / 𝑥][
𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑) )
| | 16:13,15: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ([𝑢 / 𝑥][𝑣 / 𝑦
]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑) )
| | 17:16: | ⊢ (∀𝑥𝑥 = 𝑦 → ([𝑢 / 𝑥][𝑣 / 𝑦]
𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| | 19:12,17: | ⊢ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢
/ 𝑥][𝑣 / 𝑦]𝜑)
| | 20:19: | ⊢ (∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 /
𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| | 21:2,20: | ⊢ (∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)
↔ (∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| | 22:21: | ⊢ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
𝜑) ↔ ∃𝑥(∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| | 23:13: | ⊢ (∃𝑥(∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [
𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| | 24:22,23: | ⊢ ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [
𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
| | 240:24: | ⊢ ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (
∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) ↔
(∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
𝜑)))
| | 241:: | ⊢ ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (
∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) ↔
(∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| | 242:241,240: | ⊢ ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [
𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)))
| | 243:: | ⊢ ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (
[𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
𝜑))) ↔ ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
[𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))))
| | 25:242,243: | ⊢ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ([
𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)))
| | 26:: | ⊢ ((¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣) ↔ ∃𝑥
∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))
| | qed:25,26: | ⊢ ((¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣) → ([𝑢
/ 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)))
|
|
| ⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))) |
| |
| Theorem | 2uasbanhVD 44931* |
The following User's Proof is a Virtual Deduction proof (see wvd1 44589)
completed automatically by a Metamath tools program invoking mmj2 and
the Metamath Proof Assistant. 2uasbanh 44581 is 2uasbanhVD 44931 without
virtual deductions and was automatically derived from 2uasbanhVD 44931.
(Contributed by Alan Sare, 31-May-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
| h1:: | ⊢ (𝜒 ↔ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 =
𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)))
| | 100:1: | ⊢ (𝜒 → (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 =
𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)))
| | 2:100: | ⊢ ( 𝜒 ▶ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦
= 𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)) )
| | 3:2: | ⊢ ( 𝜒 ▶ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 =
𝑣) ∧ 𝜑) )
| | 4:3: | ⊢ ( 𝜒 ▶ ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣
) )
| | 5:4: | ⊢ ( 𝜒 ▶ (¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣)
)
| | 6:5: | ⊢ ( 𝜒 ▶ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑
↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) )
| | 7:3,6: | ⊢ ( 𝜒 ▶ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑 )
| | 8:2: | ⊢ ( 𝜒 ▶ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 =
𝑣) ∧ 𝜓) )
| | 9:5: | ⊢ ( 𝜒 ▶ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜓
↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)) )
| | 10:8,9: | ⊢ ( 𝜒 ▶ [𝑢 / 𝑥][𝑣 / 𝑦]𝜓 )
| | 101:: | ⊢ ([𝑣 / 𝑦](𝜑 ∧ 𝜓) ↔ ([𝑣 /
𝑦]𝜑 ∧ [𝑣 / 𝑦]𝜓))
| | 102:101: | ⊢ ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑 ∧ 𝜓)
↔ [𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 ∧ [𝑣 / 𝑦]𝜓))
| | 103:: | ⊢ ([𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 ∧ [𝑣 / 𝑦
]𝜓) ↔ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜓))
| | 104:102,103: | ⊢ ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑 ∧ 𝜓)
↔ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜓))
| | 11:7,10,104: | ⊢ ( 𝜒 ▶ [𝑢 / 𝑥][𝑣 / 𝑦](𝜑 ∧
𝜓) )
| | 110:5: | ⊢ ( 𝜒 ▶ ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑
∧ 𝜓) ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓))) )
| | 12:11,110: | ⊢ ( 𝜒 ▶ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 =
𝑣) ∧ (𝜑 ∧ 𝜓)) )
| | 120:12: | ⊢ (𝜒 → ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣
) ∧ (𝜑 ∧ 𝜓)))
| | 13:1,120: | ⊢ ((∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)) →
∃𝑥∃𝑦((𝑥 = 𝑢
∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)))
| | 14:: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)) )
| | 15:14: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) ▶ (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) )
| | 16:14: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) ▶ (𝜑 ∧ 𝜓) )
| | 17:16: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) ▶ 𝜑 )
| | 18:15,17: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) )
| | 19:18: | ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
| | 20:19: | ⊢ (∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑
∧ 𝜓)) → ∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
| | 21:20: | ⊢ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (
𝜑 ∧ 𝜓)) → ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
| | 22:16: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) ▶ 𝜓 )
| | 23:15,22: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓) )
| | 24:23: | ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓))
| | 25:24: | ⊢ (∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑
∧ 𝜓)) → ∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓))
| | 26:25: | ⊢ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (
𝜑 ∧ 𝜓)) → ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓))
| | 27:21,26: | ⊢ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (
𝜑 ∧ 𝜓)) → (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ∧
∃𝑥∃𝑦(
(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)))
| | qed:13,27: | ⊢ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (
𝜑 ∧ 𝜓)) ↔ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ∧
∃𝑥∃𝑦(
(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)))
|
|
| ⊢ (𝜒 ↔ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓))) ⇒ ⊢ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)) ↔ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓))) |
| |
| Theorem | e2ebindVD 44932 |
The following User's Proof is a Virtual Deduction proof (see wvd1 44589)
completed automatically by a Metamath tools program invoking mmj2 and the
Metamath Proof Assistant. e2ebind 44583 is e2ebindVD 44932 without virtual
deductions and was automatically derived from e2ebindVD 44932.
| 1:: | ⊢ (𝜑 ↔ 𝜑)
| | 2:1: | ⊢ (∀𝑦𝑦 = 𝑥 → (𝜑 ↔ 𝜑))
| | 3:2: | ⊢ (∀𝑦𝑦 = 𝑥 → (∃𝑦𝜑 ↔ ∃𝑥𝜑
))
| | 4:: | ⊢ ( ∀𝑦𝑦 = 𝑥 ▶ ∀𝑦𝑦 = 𝑥 )
| | 5:3,4: | ⊢ ( ∀𝑦𝑦 = 𝑥 ▶ (∃𝑦𝜑 ↔ ∃𝑥
𝜑) )
| | 6:: | ⊢ (∀𝑦𝑦 = 𝑥 → ∀𝑦∀𝑦𝑦 = 𝑥)
| | 7:5,6: | ⊢ ( ∀𝑦𝑦 = 𝑥 ▶ ∀𝑦(∃𝑦𝜑 ↔
∃𝑥𝜑) )
| | 8:7: | ⊢ ( ∀𝑦𝑦 = 𝑥 ▶ (∃𝑦∃𝑦𝜑 ↔
∃𝑦∃𝑥𝜑) )
| | 9:: | ⊢ (∃𝑦∃𝑥𝜑 ↔ ∃𝑥∃𝑦𝜑)
| | 10:8,9: | ⊢ ( ∀𝑦𝑦 = 𝑥 ▶ (∃𝑦∃𝑦𝜑 ↔
∃𝑥∃𝑦𝜑) )
| | 11:: | ⊢ (∃𝑦𝜑 → ∀𝑦∃𝑦𝜑)
| | 12:11: | ⊢ (∃𝑦∃𝑦𝜑 ↔ ∃𝑦𝜑)
| | 13:10,12: | ⊢ ( ∀𝑦𝑦 = 𝑥 ▶ (∃𝑥∃𝑦𝜑 ↔
∃𝑦𝜑) )
| | 14:13: | ⊢ (∀𝑦𝑦 = 𝑥 → (∃𝑥∃𝑦𝜑 ↔ ∃
𝑦𝜑))
| | 15:: | ⊢ (∀𝑦𝑦 = 𝑥 ↔ ∀𝑥𝑥 = 𝑦)
| | qed:14,15: | ⊢ (∀𝑥𝑥 = 𝑦 → (∃𝑥∃𝑦𝜑 ↔ ∃
𝑦𝜑))
|
(Contributed by Alan Sare, 27-Nov-2014.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥∃𝑦𝜑 ↔ ∃𝑦𝜑)) |
| |
| 21.41.8 Virtual Deduction transcriptions of
textbook proofs
|
| |
| Theorem | sb5ALTVD 44933* |
The following User's Proof is a Natural Deduction Sequent Calculus
transcription of the Fitch-style Natural Deduction proof of Unit 20
Excercise 3.a., which is sb5 2276, found in the "Answers to Starred
Exercises" on page 457 of "Understanding Symbolic Logic", Fifth
Edition (2008), by Virginia Klenk. The same proof may also be
interpreted as a Virtual Deduction Hilbert-style axiomatic proof. It
was completed automatically by the tools program completeusersproof.cmd,
which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof
Assistant. sb5ALT 44545 is sb5ALTVD 44933 without virtual deductions and
was automatically derived from sb5ALTVD 44933.
| 1:: | ⊢ ( [𝑦 / 𝑥]𝜑 ▶ [𝑦 / 𝑥]𝜑 )
| | 2:: | ⊢ [𝑦 / 𝑥]𝑥 = 𝑦
| | 3:1,2: | ⊢ ( [𝑦 / 𝑥]𝜑 ▶ [𝑦 / 𝑥](𝑥 = 𝑦
∧ 𝜑) )
| | 4:3: | ⊢ ( [𝑦 / 𝑥]𝜑 ▶ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑
) )
| | 5:4: | ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)
)
| | 6:: | ⊢ ( ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ▶ ∃𝑥(𝑥 =
𝑦 ∧ 𝜑) )
| | 7:: | ⊢ ( ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) , (𝑥 = 𝑦 ∧ 𝜑
) ▶ (𝑥 = 𝑦 ∧ 𝜑) )
| | 8:7: | ⊢ ( ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) , (𝑥 = 𝑦 ∧ 𝜑
) ▶ 𝜑 )
| | 9:7: | ⊢ ( ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) , (𝑥 = 𝑦 ∧ 𝜑
) ▶ 𝑥 = 𝑦 )
| | 10:8,9: | ⊢ ( ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) , (𝑥 = 𝑦 ∧ 𝜑
) ▶ [𝑦 / 𝑥]𝜑 )
| | 101:: | ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
| | 11:101,10: | ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → [𝑦 / 𝑥]𝜑
)
| | 12:5,11: | ⊢ (([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑
)) ∧ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → [𝑦 / 𝑥]𝜑))
| | qed:12: | ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)
)
|
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
| |
| Theorem | vk15.4jVD 44934 |
The following User's Proof is a Natural Deduction Sequent Calculus
transcription of the Fitch-style Natural Deduction proof of Unit 15
Excercise 4.f. found in the "Answers to Starred Exercises" on page 442
of "Understanding Symbolic Logic", Fifth Edition (2008), by Virginia
Klenk. The same proof may also be interpreted to be a Virtual Deduction
Hilbert-style axiomatic proof. It was completed automatically by the
tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2
and Norm Megill's Metamath Proof Assistant. vk15.4j 44548 is vk15.4jVD 44934
without virtual deductions and was automatically derived
from vk15.4jVD 44934. Step numbers greater than 25 are additional steps
necessary for the sequent calculus proof not contained in the
Fitch-style proof. Otherwise, step i of the User's Proof corresponds to
step i of the Fitch-style proof.
| h1:: | ⊢ ¬ (∃𝑥¬ 𝜑 ∧ ∃𝑥(𝜓 ∧
¬ 𝜒))
| | h2:: | ⊢ (∀𝑥𝜒 → ¬ ∃𝑥(𝜃 ∧ 𝜏
))
| | h3:: | ⊢ ¬ ∀𝑥(𝜏 → 𝜑)
| | 4:: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ¬ ∃𝑥¬
𝜃 )
| | 5:4: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ∀𝑥𝜃 )
| | 6:3: | ⊢ ∃𝑥(𝜏 ∧ ¬ 𝜑)
| | 7:: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , (𝜏 ∧ ¬
𝜑) ▶ (𝜏 ∧ ¬ 𝜑) )
| | 8:7: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , (𝜏 ∧ ¬
𝜑) ▶ 𝜏 )
| | 9:7: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , (𝜏 ∧ ¬
𝜑) ▶ ¬ 𝜑 )
| | 10:5: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ 𝜃 )
| | 11:10,8: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , (𝜏 ∧ ¬
𝜑) ▶ (𝜃 ∧ 𝜏) )
| | 12:11: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , (𝜏 ∧ ¬
𝜑) ▶ ∃𝑥(𝜃 ∧ 𝜏) )
| | 13:12: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , (𝜏 ∧ ¬
𝜑) ▶ ¬ ¬ ∃𝑥(𝜃 ∧ 𝜏) )
| | 14:2,13: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , (𝜏 ∧ ¬
𝜑) ▶ ¬ ∀𝑥𝜒 )
| | 140:: | ⊢ (∃𝑥¬ 𝜃 → ∀𝑥∃𝑥¬ 𝜃
)
| | 141:140: | ⊢ (¬ ∃𝑥¬ 𝜃 → ∀𝑥¬ ∃𝑥
¬ 𝜃)
| | 142:: | ⊢ (∀𝑥𝜒 → ∀𝑥∀𝑥𝜒)
| | 143:142: | ⊢ (¬ ∀𝑥𝜒 → ∀𝑥¬ ∀𝑥𝜒
)
| | 144:6,14,141,143: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ¬ ∀𝑥𝜒
)
| | 15:1: | ⊢ (¬ ∃𝑥¬ 𝜑 ∨ ¬ ∃𝑥(𝜓
∧ ¬ 𝜒))
| | 16:9: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , (𝜏 ∧ ¬
𝜑) ▶ ∃𝑥¬ 𝜑 )
| | 161:: | ⊢ (∃𝑥¬ 𝜑 → ∀𝑥∃𝑥¬ 𝜑
)
| | 162:6,16,141,161: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ∃𝑥¬ 𝜑
)
| | 17:162: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ¬ ¬ ∃𝑥
¬ 𝜑 )
| | 18:15,17: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ¬ ∃𝑥(
𝜓 ∧ ¬ 𝜒) )
| | 19:18: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ∀𝑥(𝜓
→ 𝜒) )
| | 20:144: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ∃𝑥¬ 𝜒
)
| | 21:: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , ¬ 𝜒 ▶ ¬
𝜒 )
| | 22:19: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ (𝜓 → 𝜒
) )
| | 23:21,22: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , ¬ 𝜒 ▶ ¬
𝜓 )
| | 24:23: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , ¬ 𝜒 ▶ ∃
𝑥¬ 𝜓 )
| | 240:: | ⊢ (∃𝑥¬ 𝜓 → ∀𝑥∃𝑥¬ 𝜓
)
| | 241:20,24,141,240: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ∃𝑥¬ 𝜓
)
| | 25:241: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ¬ ∀𝑥𝜓
)
| | qed:25: | ⊢ (¬ ∃𝑥¬ 𝜃 → ¬ ∀𝑥𝜓)
|
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ ¬
(∃𝑥 ¬ 𝜑 ∧ ∃𝑥(𝜓 ∧ ¬ 𝜒)) & ⊢ (∀𝑥𝜒 → ¬ ∃𝑥(𝜃 ∧ 𝜏)) & ⊢ ¬
∀𝑥(𝜏 → 𝜑) ⇒ ⊢ (¬ ∃𝑥 ¬ 𝜃 → ¬ ∀𝑥𝜓) |
| |
| Theorem | notnotrALTVD 44935 |
The following User's Proof is a Natural Deduction Sequent Calculus
transcription of the Fitch-style Natural Deduction proof of Theorem 5 of
Section 14 of [Margaris] p. 59 (which is notnotr 130). The same proof
may also be interpreted as a Virtual Deduction Hilbert-style
axiomatic proof. It was completed automatically by the tools program
completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm
Megill's Metamath Proof Assistant. notnotrALT 44549 is notnotrALTVD 44935
without virtual deductions and was automatically derived
from notnotrALTVD 44935. Step i of the User's Proof corresponds to
step i of the Fitch-style proof.
| 1:: | ⊢ ( ¬ ¬ 𝜑 ▶ ¬ ¬ 𝜑 )
| | 2:: | ⊢ (¬ ¬ 𝜑 → (¬ 𝜑 → ¬ ¬ ¬ 𝜑))
| | 3:1: | ⊢ ( ¬ ¬ 𝜑 ▶ (¬ 𝜑 → ¬ ¬ ¬ 𝜑) )
| | 4:: | ⊢ ((¬ 𝜑 → ¬ ¬ ¬ 𝜑) → (¬ ¬ 𝜑 →
𝜑))
| | 5:3: | ⊢ ( ¬ ¬ 𝜑 ▶ (¬ ¬ 𝜑 → 𝜑) )
| | 6:5,1: | ⊢ ( ¬ ¬ 𝜑 ▶ 𝜑 )
| | qed:6: | ⊢ (¬ ¬ 𝜑 → 𝜑)
|
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (¬ ¬
𝜑 → 𝜑) |
| |
| Theorem | con3ALTVD 44936 |
The following User's Proof is a Natural Deduction Sequent Calculus
transcription of the Fitch-style Natural Deduction proof of Theorem 7 of
Section 14 of [Margaris] p. 60 (which is con3 153). The same proof may
also be interpreted to be a Virtual Deduction Hilbert-style axiomatic
proof. It was completed automatically by the tools program
completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm
Megill's Metamath Proof Assistant. con3ALT2 44550 is con3ALTVD 44936 without
virtual deductions and was automatically derived from con3ALTVD 44936.
Step i of the User's Proof corresponds to step i of the Fitch-style proof.
| 1:: | ⊢ ( (𝜑 → 𝜓) ▶ (𝜑 → 𝜓) )
| | 2:: | ⊢ ( (𝜑 → 𝜓) , ¬ ¬ 𝜑 ▶ ¬ ¬ 𝜑 )
| | 3:: | ⊢ (¬ ¬ 𝜑 → 𝜑)
| | 4:2: | ⊢ ( (𝜑 → 𝜓) , ¬ ¬ 𝜑 ▶ 𝜑 )
| | 5:1,4: | ⊢ ( (𝜑 → 𝜓) , ¬ ¬ 𝜑 ▶ 𝜓 )
| | 6:: | ⊢ (𝜓 → ¬ ¬ 𝜓)
| | 7:6,5: | ⊢ ( (𝜑 → 𝜓) , ¬ ¬ 𝜑 ▶ ¬ ¬ 𝜓 )
| | 8:7: | ⊢ ( (𝜑 → 𝜓) ▶ (¬ ¬ 𝜑 → ¬ ¬ 𝜓
) )
| | 9:: | ⊢ ((¬ ¬ 𝜑 → ¬ ¬ 𝜓) → (¬ 𝜓 →
¬ 𝜑))
| | 10:8: | ⊢ ( (𝜑 → 𝜓) ▶ (¬ 𝜓 → ¬ 𝜑) )
| | qed:10: | ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑))
|
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) |
| |
| 21.41.9 Theorems proved using conjunction-form
Virtual Deduction
|
| |
| Theorem | elpwgdedVD 44937 |
Membership in a power class. Theorem 86 of [Suppes] p. 47. Derived
from elpwg 4603. In form of VD deduction with 𝜑 and 𝜓 as
variable virtual hypothesis collections based on Mario Carneiro's
metavariable concept. elpwgded 44584 is elpwgdedVD 44937 using conventional
notation. (Contributed by Alan Sare, 23-Apr-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ ( 𝜑 ▶ 𝐴 ∈ V ) & ⊢ ( 𝜓 ▶ 𝐴 ⊆ 𝐵 )
⇒ ⊢ ( ( 𝜑 , 𝜓 ) ▶ 𝐴 ∈ 𝒫 𝐵 ) |
| |
| Theorem | sspwimp 44938 |
If a class is a subclass of another class, then its power class is a
subclass of that other class's power class. Left-to-right implication
of Exercise 18 of [TakeutiZaring]
p. 18. For the biconditional, see
sspwb 5454. The proof sspwimp 44938, using conventional notation, was
translated from virtual deduction form, sspwimpVD 44939, using a
translation program. (Contributed by Alan Sare, 23-Apr-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| |
| Theorem | sspwimpVD 44939 |
The following User's Proof is a Virtual Deduction proof (see wvd1 44589)
using conjunction-form virtual hypothesis collections. It was completed
manually, but has the potential to be completed automatically by a tools
program which would invoke Mel L. O'Cat's mmj2 and Norm Megill's
Metamath Proof Assistant.
sspwimp 44938 is sspwimpVD 44939 without virtual deductions and was derived
from sspwimpVD 44939. (Contributed by Alan Sare, 23-Apr-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ ( 𝐴 ⊆ 𝐵 ▶ 𝐴 ⊆ 𝐵 )
| | 2:: | ⊢ ( .............. 𝑥 ∈ 𝒫 𝐴
▶ 𝑥 ∈ 𝒫 𝐴 )
| | 3:2: | ⊢ ( .............. 𝑥 ∈ 𝒫 𝐴
▶ 𝑥 ⊆ 𝐴 )
| | 4:3,1: | ⊢ ( ( 𝐴 ⊆ 𝐵 , 𝑥 ∈ 𝒫 𝐴 ) ▶ 𝑥 ⊆ 𝐵 )
| | 5:: | ⊢ 𝑥 ∈ V
| | 6:4,5: | ⊢ ( ( 𝐴 ⊆ 𝐵 , 𝑥 ∈ 𝒫 𝐴 ) ▶ 𝑥 ∈ 𝒫 𝐵
)
| | 7:6: | ⊢ ( 𝐴 ⊆ 𝐵 ▶ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵)
)
| | 8:7: | ⊢ ( 𝐴 ⊆ 𝐵 ▶ ∀𝑥(𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈
𝒫 𝐵) )
| | 9:8: | ⊢ ( 𝐴 ⊆ 𝐵 ▶ 𝒫 𝐴 ⊆ 𝒫 𝐵 )
| | qed:9: | ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
|
|
| ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| |
| Theorem | sspwimpcf 44940 |
If a class is a subclass of another class, then its power class is a
subclass of that other class's power class. Left-to-right implication
of Exercise 18 of [TakeutiZaring]
p. 18. sspwimpcf 44940, using
conventional notation, was translated from its virtual deduction form,
sspwimpcfVD 44941, using a translation program. (Contributed
by Alan Sare,
13-Jun-2015.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| |
| Theorem | sspwimpcfVD 44941 |
The following User's Proof is a Virtual Deduction proof (see wvd1 44589)
using conjunction-form virtual hypothesis collections. It was completed
automatically by a tools program which would invokes Mel L. O'Cat's mmj2
and Norm Megill's Metamath Proof Assistant.
sspwimpcf 44940 is sspwimpcfVD 44941 without virtual deductions and was derived
from sspwimpcfVD 44941.
The version of completeusersproof.cmd used is capable of only generating
conjunction-form unification theorems, not unification deductions.
(Contributed by Alan Sare, 13-Jun-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ ( 𝐴 ⊆ 𝐵 ▶ 𝐴 ⊆ 𝐵 )
| | 2:: | ⊢ ( ........... 𝑥 ∈ 𝒫 𝐴
▶ 𝑥 ∈ 𝒫 𝐴 )
| | 3:2: | ⊢ ( ........... 𝑥 ∈ 𝒫 𝐴
▶ 𝑥 ⊆ 𝐴 )
| | 4:3,1: | ⊢ ( ( 𝐴 ⊆ 𝐵 , 𝑥 ∈ 𝒫 𝐴 ) ▶ 𝑥 ⊆ 𝐵 )
| | 5:: | ⊢ 𝑥 ∈ V
| | 6:4,5: | ⊢ ( ( 𝐴 ⊆ 𝐵 , 𝑥 ∈ 𝒫 𝐴 ) ▶ 𝑥 ∈ 𝒫 𝐵
)
| | 7:6: | ⊢ ( 𝐴 ⊆ 𝐵 ▶ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵)
)
| | 8:7: | ⊢ ( 𝐴 ⊆ 𝐵 ▶ ∀𝑥(𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈
𝒫 𝐵) )
| | 9:8: | ⊢ ( 𝐴 ⊆ 𝐵 ▶ 𝒫 𝐴 ⊆ 𝒫 𝐵 )
| | qed:9: | ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
|
|
| ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| |
| Theorem | suctrALTcf 44942 |
The successor of a transitive class is transitive. suctrALTcf 44942, using
conventional notation, was translated from virtual deduction form,
suctrALTcfVD 44943, using a translation program. (Contributed
by Alan
Sare, 13-Jun-2015.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ (Tr 𝐴 → Tr suc 𝐴) |
| |
| Theorem | suctrALTcfVD 44943 |
The following User's Proof is a Virtual Deduction proof (see wvd1 44589)
using conjunction-form virtual hypothesis collections. The
conjunction-form version of completeusersproof.cmd. It allows the User
to avoid superflous virtual hypotheses. This proof was completed
automatically by a tools program which invokes Mel L. O'Cat's
mmj2 and Norm Megill's Metamath Proof Assistant. suctrALTcf 44942
is suctrALTcfVD 44943 without virtual deductions and was derived
automatically from suctrALTcfVD 44943. The version of
completeusersproof.cmd used is capable of only generating
conjunction-form unification theorems, not unification deductions.
(Contributed by Alan Sare, 13-Jun-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ ( Tr 𝐴 ▶ Tr 𝐴 )
| | 2:: | ⊢ ( ......... (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
suc 𝐴) ▶ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) )
| | 3:2: | ⊢ ( ......... (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
suc 𝐴) ▶ 𝑧 ∈ 𝑦 )
| | 4:: | ⊢ ( ...................................
....... 𝑦 ∈ 𝐴 ▶ 𝑦 ∈ 𝐴 )
| | 5:1,3,4: | ⊢ ( ( Tr 𝐴 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴)
, 𝑦 ∈ 𝐴 ) ▶ 𝑧 ∈ 𝐴 )
| | 6:: | ⊢ 𝐴 ⊆ suc 𝐴
| | 7:5,6: | ⊢ ( ( Tr 𝐴 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴)
, 𝑦 ∈ 𝐴 ) ▶ 𝑧 ∈ suc 𝐴 )
| | 8:7: | ⊢ ( ( Tr 𝐴 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴)
) ▶ (𝑦 ∈ 𝐴 → 𝑧 ∈ suc 𝐴) )
| | 9:: | ⊢ ( ...................................
...... 𝑦 = 𝐴 ▶ 𝑦 = 𝐴 )
| | 10:3,9: | ⊢ ( ........ ( (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
suc 𝐴), 𝑦 = 𝐴 ) ▶ 𝑧 ∈ 𝐴 )
| | 11:10,6: | ⊢ ( ........ ( (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
suc 𝐴), 𝑦 = 𝐴 ) ▶ 𝑧 ∈ suc 𝐴 )
| | 12:11: | ⊢ ( .......... (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
suc 𝐴) ▶ (𝑦 = 𝐴 → 𝑧 ∈ suc 𝐴) )
| | 13:2: | ⊢ ( .......... (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
suc 𝐴) ▶ 𝑦 ∈ suc 𝐴 )
| | 14:13: | ⊢ ( .......... (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
suc 𝐴) ▶ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴) )
| | 15:8,12,14: | ⊢ ( ( Tr 𝐴 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴)
) ▶ 𝑧 ∈ suc 𝐴 )
| | 16:15: | ⊢ ( Tr 𝐴 ▶ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈
suc 𝐴) → 𝑧 ∈ suc 𝐴) )
| | 17:16: | ⊢ ( Tr 𝐴 ▶ ∀𝑧∀𝑦((𝑧 ∈
𝑦 ∧ 𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴) )
| | 18:17: | ⊢ ( Tr 𝐴 ▶ Tr suc 𝐴 )
| | qed:18: | ⊢ (Tr 𝐴 → Tr suc 𝐴)
|
|
| ⊢ (Tr 𝐴 → Tr suc 𝐴) |
| |
| 21.41.10 Theorems with a VD proof in
conventional notation derived from a VD proof
|
| |
| Theorem | suctrALT3 44944 |
The successor of a transitive class is transitive. suctrALT3 44944 is the
completed proof in conventional notation of the Virtual Deduction proof
https://us.metamath.org/other/completeusersproof/suctralt3vd.html 44944.
It was completed manually. The potential for automated derivation from
the VD proof exists. See wvd1 44589 for a description of Virtual
Deduction.
Some sub-theorems of the proof were completed using a unification
deduction (e.g., the sub-theorem whose assertion is step 19 used
jaoded 44586). Unification deductions employ Mario
Carneiro's metavariable
concept. Some sub-theorems were completed using a unification theorem
(e.g., the sub-theorem whose assertion is step 24 used dftr2 5261) .
(Contributed by Alan Sare, 3-Dec-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (Tr 𝐴 → Tr suc 𝐴) |
| |
| Theorem | sspwimpALT 44945 |
If a class is a subclass of another class, then its power class is a
subclass of that other class's power class. Left-to-right implication
of Exercise 18 of [TakeutiZaring]
p. 18. sspwimpALT 44945 is the completed
proof in conventional notation of the Virtual Deduction proof
https://us.metamath.org/other/completeusersproof/sspwimpaltvd.html 44945.
It was completed manually. The potential for automated derivation from
the VD proof exists. See wvd1 44589 for a description of Virtual
Deduction.
Some sub-theorems of the proof were completed using a unification
deduction (e.g., the sub-theorem whose assertion is step 9 used
elpwgded 44584). Unification deductions employ Mario
Carneiro's
metavariable concept. Some sub-theorems were completed using a
unification theorem (e.g., the sub-theorem whose assertion is step 5
used elpwi 4607). (Contributed by Alan Sare, 3-Dec-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| |
| Theorem | unisnALT 44946 |
A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53.
The User manually input on a mmj2 Proof Worksheet, without labels, all
steps of unisnALT 44946 except 1, 11, 15, 21, and 30. With
execution of the
mmj2 unification command, mmj2 could find labels for all steps except
for 2, 12, 16, 22, and 31 (and the then non-existing steps 1, 11, 15,
21, and 30). mmj2 could not find reference theorems for those five steps
because the hypothesis field of each of these steps was empty and none
of those steps unifies with a theorem in set.mm. Each of these five
steps is a semantic variation of a theorem in set.mm and is 2-step
provable. mmj2 does not have the ability to automatically generate the
semantic variation in set.mm of a theorem in a mmj2 Proof Worksheet
unless the theorem in the Proof Worksheet is labeled with a 1-hypothesis
deduction whose hypothesis is a theorem in set.mm which unifies with the
theorem in the Proof Worksheet. The stepprover.c program, which invokes
mmj2, has this capability. stepprover.c automatically generated steps 1,
11, 15, 21, and 30, labeled all steps, and generated the RPN proof of
unisnALT 44946. Roughly speaking, stepprover.c added to
the Proof
Worksheet a labeled duplicate step of each non-unifying theorem for each
label in a text file, labels.txt, containing a list of labels provided
by the User. Upon mmj2 unification, stepprover.c identified a label for
each of the five theorems which 2-step proves it. For unisnALT 44946, the
label list is a list of all 1-hypothesis propositional calculus
deductions in set.mm. stepproverp.c is the same as stepprover.c except
that it intermittently pauses during execution, allowing the User to
observe the changes to a text file caused by the execution of particular
statements of the program. (Contributed by Alan Sare, 19-Aug-2016.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ 𝐴 ∈
V ⇒ ⊢ ∪
{𝐴} = 𝐴 |
| |
| 21.41.11 Theorems with a proof in conventional
notation derived from a VD proof
Theorems with a proof in conventional notation automatically derived by
completeusersproof.c from a Virtual Deduction User's Proof.
|
| |
| Theorem | notnotrALT2 44947 |
Converse of double negation. Theorem *2.14 of [WhiteheadRussell] p. 102.
Proof derived by completeusersproof.c from User's Proof in
VirtualDeductionProofs.txt. (Contributed by Alan Sare, 11-Sep-2016.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (¬ ¬
𝜑 → 𝜑) |
| |
| Theorem | sspwimpALT2 44948 |
If a class is a subclass of another class, then its power class is a
subclass of that other class's power class. Left-to-right implication
of Exercise 18 of [TakeutiZaring]
p. 18. Proof derived by
completeusersproof.c from User's Proof in VirtualDeductionProofs.txt.
The User's Proof in html format is displayed in
https://us.metamath.org/other/completeusersproof/sspwimpaltvd.html.
(Contributed by Alan Sare, 11-Sep-2016.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| |
| Theorem | e2ebindALT 44949 |
Absorption of an existential quantifier of a double existential quantifier
of non-distinct variables. The proof is derived by completeusersproof.c
from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html
format is displayed in e2ebindVD 44932. (Contributed by Alan Sare,
11-Sep-2016.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥∃𝑦𝜑 ↔ ∃𝑦𝜑)) |
| |
| Theorem | ax6e2ndALT 44950* |
If at least two sets exist (dtru 5441), then the same is true expressed
in an alternate form similar to the form of ax6e 2388.
The proof is
derived by completeusersproof.c from User's Proof in
VirtualDeductionProofs.txt. The User's Proof in html format is
displayed in ax6e2ndVD 44928. (Contributed by Alan Sare, 11-Sep-2016.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (¬
∀𝑥 𝑥 = 𝑦 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
| |
| Theorem | ax6e2ndeqALT 44951* |
"At least two sets exist" expressed in the form of dtru 5441
is logically
equivalent to the same expressed in a form similar to ax6e 2388
if dtru 5441
is false implies 𝑢 = 𝑣. Proof derived by
completeusersproof.c from
User's Proof in VirtualDeductionProofs.txt. The User's Proof in html
format is displayed in ax6e2ndeqVD 44929. (Contributed by Alan Sare,
11-Sep-2016.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) ↔ ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
| |
| Theorem | 2sb5ndALT 44952* |
Equivalence for double substitution 2sb5 2278 without distinct 𝑥,
𝑦 requirement. 2sb5nd 44580 is derived from 2sb5ndVD 44930. The proof is
derived by completeusersproof.c from User's Proof in
VirtualDeductionProofs.txt. The User's Proof in html format is
displayed in 2sb5ndVD 44930. (Contributed by Alan Sare, 19-Sep-2016.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))) |
| |
| Theorem | chordthmALT 44953* |
The intersecting chords theorem. If points A, B, C, and D lie on a
circle (with center Q, say), and the point P is on the interior of the
segments AB and CD, then the two products of lengths PA · PB and
PC · PD are equal. The Euclidean plane is identified with the
complex plane, and the fact that P is on AB and on CD is expressed by
the hypothesis that the angles APB and CPD are equal to π. The
result is proven by using chordthmlem5 26879 twice to show that PA
· PB and PC · PD both equal BQ
2
−
PQ
2
. This is similar to the proof of the
theorem given in Euclid's Elements, where it is Proposition
III.35.
Proven by David Moews on 28-Feb-2017 as chordthm 26880.
https://us.metamath.org/other/completeusersproof/chordthmaltvd.html 26880 is
a Virtual
Deduction User's Proof transcription of chordthm 26880. That VD User's
Proof was input into completeusersproof, automatically generating this
chordthmALT 44953 Metamath proof. (Contributed by Alan Sare,
19-Sep-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0})
↦ (ℑ‘(log‘(𝑦 / 𝑥)))) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑃 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝑃)
& ⊢ (𝜑 → 𝐵 ≠ 𝑃)
& ⊢ (𝜑 → 𝐶 ≠ 𝑃)
& ⊢ (𝜑 → 𝐷 ≠ 𝑃)
& ⊢ (𝜑 → ((𝐴 − 𝑃)𝐹(𝐵 − 𝑃)) = π) & ⊢ (𝜑 → ((𝐶 − 𝑃)𝐹(𝐷 − 𝑃)) = π) & ⊢ (𝜑 → 𝑄 ∈ ℂ) & ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) & ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐶 − 𝑄))) & ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐷 − 𝑄))) ⇒ ⊢ (𝜑 → ((abs‘(𝑃 − 𝐴)) · (abs‘(𝑃 − 𝐵))) = ((abs‘(𝑃 − 𝐶)) · (abs‘(𝑃 − 𝐷)))) |
| |
| Theorem | isosctrlem1ALT 44954 |
Lemma for isosctr 26864. This proof was automatically derived by
completeusersproof from its Virtual Deduction proof counterpart
https://us.metamath.org/other/completeusersproof/isosctrlem1altvd.html 26864.
As it is verified by the Metamath program, isosctrlem1ALT 44954 verifies
https://us.metamath.org/other/completeusersproof/isosctrlem1altvd.html 44954.
(Contributed by Alan Sare, 22-Apr-2018.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) = 1 ∧
¬ 1 = 𝐴) →
(ℑ‘(log‘(1 − 𝐴))) ≠ π) |
| |
| Theorem | iunconnlem2 44955* |
The indexed union of connected overlapping subspaces sharing a common
point is connected. This proof was automatically derived by
completeusersproof from its Virtual Deduction proof counterpart
https://us.metamath.org/other/completeusersproof/iunconlem2vd.html.
As it is verified by the Metamath program, iunconnlem2 44955 verifies
https://us.metamath.org/other/completeusersproof/iunconlem2vd.html 44955.
(Contributed by Alan Sare, 22-Apr-2018.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (𝜓 ↔ ((((((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑣 ∈ 𝐽) ∧ (𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅) ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅) ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪ 𝑘 ∈ 𝐴 𝐵)) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣))) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ 𝑋)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐽 ↾t 𝐵) ∈ Conn)
⇒ ⊢ (𝜑 → (𝐽 ↾t ∪ 𝑘 ∈ 𝐴 𝐵) ∈ Conn) |
| |
| Theorem | iunconnALT 44956* |
The indexed union of connected overlapping subspaces sharing a common
point is connected. This proof was automatically derived by
completeusersproof from its Virtual Deduction proof counterpart
https://us.metamath.org/other/completeusersproof/iunconaltvd.html.
As it is verified by the Metamath program, iunconnALT 44956 verifies
https://us.metamath.org/other/completeusersproof/iunconaltvd.html 44956.
(Contributed by Alan Sare, 22-Apr-2018.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ 𝑋)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐽 ↾t 𝐵) ∈ Conn)
⇒ ⊢ (𝜑 → (𝐽 ↾t ∪ 𝑘 ∈ 𝐴 𝐵) ∈ Conn) |
| |
| Theorem | sineq0ALT 44957 |
A complex number whose sine is zero is an integer multiple of π.
The Virtual Deduction form of the proof is
https://us.metamath.org/other/completeusersproof/sineq0altvd.html.
The
Metamath form of the proof is sineq0ALT 44957. The Virtual Deduction proof
is based on Mario Carneiro's revision of Norm Megill's proof of sineq0 26566.
The Virtual Deduction proof is verified by automatically transforming it
into the Metamath form of the proof using completeusersproof, which is
verified by the Metamath program. The proof of
https://us.metamath.org/other/completeusersproof/sineq0altro.html 26566 is a
form of the completed proof which preserves the Virtual Deduction proof's
step numbers and their ordering. (Contributed by Alan Sare, 13-Jun-2018.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ ℂ →
((sin‘𝐴) = 0 ↔
(𝐴 / π) ∈
ℤ)) |
| |
| 21.42 Mathbox for Eric
Schmidt
|
| |
| 21.42.1 Miscellany
|
| |
| Theorem | rspesbcd 44958* |
Restricted quantifier version of spesbcd 3883. (Contributed by Eric
Schmidt, 29-Sep-2025.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝐵)
& ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
| |
| Theorem | rext0 44959* |
Nonempty existential quantification of a theorem is true. (Contributed
by Eric Schmidt, 19-Oct-2025.)
|
| ⊢ 𝜑 ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ 𝐴 ≠ ∅) |
| |
| 21.42.2 Study of dfbi1ALT
|
| |
| Theorem | dfbi1ALTa 44960 |
Version of dfbi1ALT 214 using ⊤ for
step 2 and shortened using a1i 11,
a2i 14, and con4i 114. (Contributed by Eric Schmidt,
22-Oct-2025.)
(New usage is discouraged.) (Proof modification is discouraged.)
|
| ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) |
| |
| Theorem | simprimi 44961 |
Inference associated with simprim 166. Proved exactly as step 11 is
obtained from step 4 in dfbi1ALTa 44960. (Contributed by Eric Schmidt,
22-Oct-2025.) (New usage is discouraged.)
(Proof modification is discouraged.)
|
| ⊢ ¬ (𝜑 → ¬ 𝜓) ⇒ ⊢ 𝜓 |
| |
| Theorem | dfbi1ALTb 44962 |
Further shorten dfbi1ALTa 44960 using simprimi 44961. (Contributed by Eric
Schmidt, 22-Oct-2025.) (New usage is discouraged.)
(Proof modification is discouraged.)
|
| ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) |
| |
| 21.42.3 Relation-preserving
functions
|
| |
| Syntax | wrelp 44963 |
Extend the definition of a wff to include the relation-preserving
property. (Contributed by Eric Schmidt, 11-Oct-2025.)
|
| wff 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) |
| |
| Definition | df-relp 44964* |
Define the relation-preserving predicate. This is a viable notion of
"homomorphism" corresponding to df-isom 6570. (Contributed by Eric
Schmidt, 11-Oct-2025.)
|
| ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ (𝐻:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
| |
| Theorem | relpeq1 44965 |
Equality theorem for relation-preserving functions. (Contributed by
Eric Schmidt, 11-Oct-2025.)
|
| ⊢ (𝐻 = 𝐺 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐺 RelPres 𝑅, 𝑆(𝐴, 𝐵))) |
| |
| Theorem | relpeq2 44966 |
Equality theorem for relation-preserving functions. (Contributed by
Eric Schmidt, 11-Oct-2025.)
|
| ⊢ (𝑅 = 𝑇 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑇, 𝑆(𝐴, 𝐵))) |
| |
| Theorem | relpeq3 44967 |
Equality theorem for relation-preserving functions. (Contributed by
Eric Schmidt, 11-Oct-2025.)
|
| ⊢ (𝑆 = 𝑇 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑅, 𝑇(𝐴, 𝐵))) |
| |
| Theorem | relpeq4 44968 |
Equality theorem for relation-preserving functions. (Contributed by
Eric Schmidt, 11-Oct-2025.)
|
| ⊢ (𝐴 = 𝐶 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑅, 𝑆(𝐶, 𝐵))) |
| |
| Theorem | relpeq5 44969 |
Equality theorem for relation-preserving functions. (Contributed by
Eric Schmidt, 11-Oct-2025.)
|
| ⊢ (𝐵 = 𝐶 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐶))) |
| |
| Theorem | nfrelp 44970 |
Bound-variable hypothesis builder for a relation-preserving function.
(Contributed by Eric Schmidt, 11-Oct-2025.)
|
| ⊢
Ⅎ𝑥𝐻
& ⊢ Ⅎ𝑥𝑅
& ⊢ Ⅎ𝑥𝑆
& ⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) |
| |
| Theorem | relpf 44971 |
A relation-preserving function is a function. (Contributed by Eric
Schmidt, 11-Oct-2025.)
|
| ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → 𝐻:𝐴⟶𝐵) |
| |
| Theorem | relprel 44972 |
A relation-preserving function preserves the relation. (Contributed by
Eric Schmidt, 11-Oct-2025.)
|
| ⊢ ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶𝑅𝐷 → (𝐻‘𝐶)𝑆(𝐻‘𝐷))) |
| |
| Theorem | relpmin 44973 |
A preimage of a minimal element under a relation-preserving function is
minimal. Essentially one half of isomin 7357. (Contributed by Eric
Schmidt, 11-Oct-2025.)
|
| ⊢ ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) = ∅ → (𝐶 ∩ (◡𝑅 “ {𝐷})) = ∅)) |
| |
| Theorem | relpfrlem 44974* |
Lemma for relpfr 44975. Proved without using the Axiom of
Replacement.
This is isofrlem 7360 with weaker hypotheses. (Contributed by Eric
Schmidt, 11-Oct-2025.)
|
| ⊢ (𝜑 → 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵)) & ⊢ (𝜑 → (𝐻 “ 𝑥) ∈ V) ⇒ ⊢ (𝜑 → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) |
| |
| Theorem | relpfr 44975 |
If the image of a set under a relation-preserving function is
well-founded, so is the set. See isofr 7362 for a bidirectional statement.
A more general version of Lemma I.9.9 of [Kunen2] p. 47. (Contributed
by Eric Schmidt, 11-Oct-2025.)
|
| ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) |
| |
| 21.42.4 Well-founded sets
|
| |
| Theorem | trwf 44976 |
The class of well-founded sets is transitive. (Contributed by Eric
Schmidt, 9-Sep-2025.)
|
| ⊢ Tr ∪ (𝑅1 “ On) |
| |
| Theorem | rankrelp 44977 |
The rank function preserves ∈. (Contributed by
Eric Schmidt,
11-Oct-2025.)
|
| ⊢ rank RelPres E
, E (∪ (𝑅1 “ On),
On) |
| |
| Theorem | wffr 44978 |
The class of well-founded sets is well-founded. Lemma I.9.24(2) of
[Kunen2] p. 53. (Contributed by Eric
Schmidt, 11-Oct-2025.)
|
| ⊢ E Fr ∪ (𝑅1 “ On) |
| |
| Theorem | trfr 44979 |
A transitive class well-founded by ∈ is a subclass
of the class of
well-founded sets. Part of Lemma I.9.21 of [Kunen2] p. 53.
(Contributed by Eric Schmidt, 26-Oct-2025.)
|
| ⊢ ((Tr 𝐴 ∧ E Fr 𝐴) → 𝐴 ⊆ ∪
(𝑅1 “ On)) |
| |
| Theorem | tcfr 44980 |
A set is well-founded if and only if its transitive closure is
well-founded by ∈. This characterization
of well-founded sets is
that in Definition I.9.20 of [Kunen2] p.
53. (Contributed by Eric
Schmidt, 26-Oct-2025.)
|
| ⊢ 𝐴 ∈
V ⇒ ⊢ (𝐴 ∈ ∪
(𝑅1 “ On) ↔ E Fr (TC‘𝐴)) |
| |
| Theorem | xpwf 44981 |
The Cartesian product of two well-founded sets is well-founded.
(Contributed by Eric Schmidt, 12-Sep-2025.)
|
| ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → (𝐴 × 𝐵) ∈ ∪
(𝑅1 “ On)) |
| |
| Theorem | dmwf 44982 |
The domain of a well-founded set is well-founded. (Contributed by Eric
Schmidt, 12-Sep-2025.)
|
| ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → dom 𝐴 ∈ ∪ (𝑅1 “ On)) |
| |
| Theorem | rnwf 44983 |
The range of a well-founded set is well-founded. (Contributed by Eric
Schmidt, 12-Sep-2025.)
|
| ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ran 𝐴 ∈ ∪ (𝑅1 “ On)) |
| |
| Theorem | relwf 44984 |
A relation is a well-founded set iff its domain and range are.
(Contributed by Eric Schmidt, 29-Sep-2025.)
|
| ⊢ (Rel 𝑅 → (𝑅 ∈ ∪
(𝑅1 “ On) ↔ (dom 𝑅 ∈ ∪
(𝑅1 “ On) ∧ ran 𝑅 ∈ ∪
(𝑅1 “ On)))) |
| |
| 21.42.5 Absoluteness in transitive
models
|
| |
| Theorem | ralabso 44985* |
Simplification of restricted quantification in a transitive class. When
𝜑 is quantifier-free, this shows that
the formula ∀𝑥 ∈ 𝑦𝜑
is absolute for transitive models, which is a particular case of Lemma
I.16.2 of [Kunen2] p. 95. (Contributed
by Eric Schmidt,
19-Oct-2025.)
|
| ⊢ ((Tr 𝑀 ∧ 𝐴 ∈ 𝑀) → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 → 𝜑))) |
| |
| Theorem | rexabso 44986* |
Simplification of restricted quantification in a transitive class. When
𝜑 is quantifier-free, this shows that
the formula ∃𝑥 ∈ 𝑦𝜑
is absolute for transitive models, which is a particular case of Lemma
I.16.2 of [Kunen2] p. 95. (Contributed
by Eric Schmidt,
19-Oct-2025.)
|
| ⊢ ((Tr 𝑀 ∧ 𝐴 ∈ 𝑀) → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 ∧ 𝜑))) |
| |
| Theorem | ralabsod 44987* |
Deduction form of ralabso 44985. (Contributed by Eric Schmidt,
19-Oct-2025.)
|
| ⊢ (𝜑 → Tr 𝑀) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑀) → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 → 𝜓))) |
| |
| Theorem | rexabsod 44988* |
Deduction form of rexabso 44986. (Contributed by Eric Schmidt,
19-Oct-2025.)
|
| ⊢ (𝜑 → Tr 𝑀) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑀) → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 ∧ 𝜓))) |
| |
| Theorem | ralabsobidv 44989* |
Formula-building lemma for proving absoluteness results.
(Contributed by Eric Schmidt, 19-Oct-2025.)
|
| ⊢ (𝜑 → Tr 𝑀)
& ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑀) → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 → 𝜒))) |
| |
| Theorem | rexabsobidv 44990* |
Formula-building lemma for proving absoluteness results.
(Contributed by Eric Schmidt, 19-Oct-2025.)
|
| ⊢ (𝜑 → Tr 𝑀)
& ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑀) → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 ∧ 𝜒))) |
| |
| Theorem | ssabso 44991* |
The notion "𝑥 is a subset of 𝑦 " is absolute for
transitive
models. Compare Example I.16.3 of [Kunen2] p. 96 and the following
discussion. (Contributed by Eric Schmidt, 19-Oct-2025.)
|
| ⊢ ((Tr 𝑀 ∧ 𝐴 ∈ 𝑀) → (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵))) |
| |
| Theorem | disjabso 44992* |
Disjointness is absolute for transitive models. Compare Example I.16.3
of [Kunen2] p. 96 and the following
discussion. (Contributed by Eric
Schmidt, 19-Oct-2025.)
|
| ⊢ ((Tr 𝑀 ∧ 𝐴 ∈ 𝑀) → ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵))) |
| |
| Theorem | n0abso 44993* |
Nonemptiness is absolute for transitive models. Compare Example I.16.3
of [Kunen2] p. 96 and the following
discussion. (Contributed by Eric
Schmidt, 19-Oct-2025.)
|
| ⊢ ((Tr 𝑀 ∧ 𝐴 ∈ 𝑀) → (𝐴 ≠ ∅ ↔ ∃𝑥 ∈ 𝑀 𝑥 ∈ 𝐴)) |
| |
| 21.42.6 Lemmas for showing axioms hold in
models
|
| |
| Theorem | traxext 44994* |
A transitive class models the Axiom of Extensionality ax-ext 2708. Lemma
II.2.4(1) of [Kunen2] p. 111.
(Contributed by Eric Schmidt,
11-Sep-2025.)
|
| ⊢ (Tr 𝑀 → ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦)) |
| |
| Theorem | modelaxreplem1 44995* |
Lemma for modelaxrep 44998. We show that 𝑀 is closed under taking
subsets. (Contributed by Eric Schmidt, 29-Sep-2025.)
|
| ⊢ (𝜓 → 𝑥 ⊆ 𝑀)
& ⊢ (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓 ∈ 𝑀 ∧ ran 𝑓 ⊆ 𝑀) → ran 𝑓 ∈ 𝑀)) & ⊢ (𝜓 → ∅ ∈ 𝑀) & ⊢ (𝜓 → 𝑥 ∈ 𝑀)
& ⊢ 𝐴 ⊆ 𝑥 ⇒ ⊢ (𝜓 → 𝐴 ∈ 𝑀) |
| |
| Theorem | modelaxreplem2 44996* |
Lemma for modelaxrep 44998. We define a class 𝐹 and show that the
antecedent of Replacement implies that 𝐹 is a function. We use
Replacement (in the form of funex 7239) to show that 𝐹 exists. Then
we show that, under our hypotheses, the range of 𝐹 is a
member of
𝑀. (Contributed by Eric Schmidt,
29-Sep-2025.)
|
| ⊢ (𝜓 → 𝑥 ⊆ 𝑀)
& ⊢ (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓 ∈ 𝑀 ∧ ran 𝑓 ⊆ 𝑀) → ran 𝑓 ∈ 𝑀)) & ⊢ (𝜓 → ∅ ∈ 𝑀) & ⊢ (𝜓 → 𝑥 ∈ 𝑀)
& ⊢ Ⅎ𝑤𝜓
& ⊢ Ⅎ𝑧𝜓
& ⊢ Ⅎ𝑧𝐹
& ⊢ 𝐹 = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ 𝑥 ∧ (𝑧 ∈ 𝑀 ∧ ∀𝑦𝜑))} & ⊢ (𝜓 → (𝑤 ∈ 𝑀 → ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 (∀𝑦𝜑 → 𝑧 = 𝑦))) ⇒ ⊢ (𝜓 → ran 𝐹 ∈ 𝑀) |
| |
| Theorem | modelaxreplem3 44997* |
Lemma for modelaxrep 44998. We show that the consequent of Replacement
is satisfied with ran 𝐹 as the value of 𝑦.
(Contributed by
Eric Schmidt, 29-Sep-2025.)
|
| ⊢ (𝜓 → 𝑥 ⊆ 𝑀)
& ⊢ (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓 ∈ 𝑀 ∧ ran 𝑓 ⊆ 𝑀) → ran 𝑓 ∈ 𝑀)) & ⊢ (𝜓 → ∅ ∈ 𝑀) & ⊢ (𝜓 → 𝑥 ∈ 𝑀)
& ⊢ Ⅎ𝑤𝜓
& ⊢ Ⅎ𝑧𝜓
& ⊢ Ⅎ𝑧𝐹
& ⊢ 𝐹 = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ 𝑥 ∧ (𝑧 ∈ 𝑀 ∧ ∀𝑦𝜑))} & ⊢ (𝜓 → (𝑤 ∈ 𝑀 → ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 (∀𝑦𝜑 → 𝑧 = 𝑦))) ⇒ ⊢ (𝜓 → ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑀 (𝑤 ∈ 𝑥 ∧ ∀𝑦𝜑))) |
| |
| Theorem | modelaxrep 44998* |
Conditions which guarantee that a class models the Axiom of Replacement
ax-rep 5279. Similar to Lemma II.2.4(6) of [Kunen2] p. 111. The first
two hypotheses are those in Kunen. The reason for the third hypothesis
that our version of Replacement is different from Kunen's (which is
zfrep6 7979). If we assumed Regularity, we could
eliminate this extra
hypothesis, since under Regularity, the empty set is a member of every
non-empty transitive class.
Note that, to obtain the relativization of an instance of Replacement to
𝑀, the formula ∀𝑦𝜑 would need to be replaced
with
∀𝑦 ∈ 𝑀𝜒, where 𝜒 is 𝜑 with all quantifiers
relativized to 𝑀. However, we can obtain this by
using
𝑦
∈ 𝑀 ∧ 𝜒 for 𝜑 in this theorem, so it
does establish that
all instances of Replacement hold in 𝑀. (Contributed by Eric
Schmidt, 29-Sep-2025.)
|
| ⊢ (𝜓 → Tr 𝑀)
& ⊢ (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓 ∈ 𝑀 ∧ ran 𝑓 ⊆ 𝑀) → ran 𝑓 ∈ 𝑀)) & ⊢ (𝜓 → ∅ ∈ 𝑀)
⇒ ⊢ (𝜓 → ∀𝑥 ∈ 𝑀 (∀𝑤 ∈ 𝑀 ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 (∀𝑦𝜑 → 𝑧 = 𝑦) → ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑀 (𝑤 ∈ 𝑥 ∧ ∀𝑦𝜑)))) |
| |
| Theorem | ssclaxsep 44999* |
A class that is closed under subsets models the Axiom of Separation
ax-sep 5296. Lemma II.2.4(3) of [Kunen2] p. 111.
Note that, to obtain the relativization of an instance of Separation to
𝑀, the formula 𝜑 would need to be replaced
with its
relativization to 𝑀. However, this new formula is a
valid
substitution for 𝜑, so this theorem does establish that
all
instances of Separation hold in 𝑀. (Contributed by Eric Schmidt,
29-Sep-2025.)
|
| ⊢ (∀𝑧 ∈ 𝑀 𝒫 𝑧 ⊆ 𝑀 → ∀𝑧 ∈ 𝑀 ∃𝑦 ∈ 𝑀 ∀𝑥 ∈ 𝑀 (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑))) |
| |
| Theorem | 0elaxnul 45000* |
A class that contains the empty set models the Null Set Axiom ax-nul 5306.
(Contributed by Eric Schmidt, 19-Oct-2025.)
|
| ⊢ (∅
∈ 𝑀 →
∃𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ¬ 𝑦 ∈ 𝑥) |