| Metamath
Proof Explorer Theorem List (p. 450 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | e2ebindALT 44901 | Absorption of an existential quantifier of a double existential quantifier of non-distinct variables. The proof is derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in e2ebindVD 44884. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥∃𝑦𝜑 ↔ ∃𝑦𝜑)) | ||
| Theorem | ax6e2ndALT 44902* | If at least two sets exist (dtru 5411), then the same is true expressed in an alternate form similar to the form of ax6e 2387. The proof is derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in ax6e2ndVD 44880. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) | ||
| Theorem | ax6e2ndeqALT 44903* | "At least two sets exist" expressed in the form of dtru 5411 is logically equivalent to the same expressed in a form similar to ax6e 2387 if dtru 5411 is false implies 𝑢 = 𝑣. Proof derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in ax6e2ndeqVD 44881. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) ↔ ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) | ||
| Theorem | 2sb5ndALT 44904* | Equivalence for double substitution 2sb5 2278 without distinct 𝑥, 𝑦 requirement. 2sb5nd 44533 is derived from 2sb5ndVD 44882. The proof is derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in 2sb5ndVD 44882. (Contributed by Alan Sare, 19-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))) | ||
| Theorem | chordthmALT 44905* | The intersecting chords theorem. If points A, B, C, and D lie on a circle (with center Q, say), and the point P is on the interior of the segments AB and CD, then the two products of lengths PA · PB and PC · PD are equal. The Euclidean plane is identified with the complex plane, and the fact that P is on AB and on CD is expressed by the hypothesis that the angles APB and CPD are equal to π. The result is proven by using chordthmlem5 26796 twice to show that PA · PB and PC · PD both equal BQ 2 − PQ 2 . This is similar to the proof of the theorem given in Euclid's Elements, where it is Proposition III.35. Proven by David Moews on 28-Feb-2017 as chordthm 26797. https://us.metamath.org/other/completeusersproof/chordthmaltvd.html 26797 is a Virtual Deduction User's Proof transcription of chordthm 26797. That VD User's Proof was input into completeusersproof, automatically generating this chordthmALT 44905 Metamath proof. (Contributed by Alan Sare, 19-Sep-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑃 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝑃) & ⊢ (𝜑 → 𝐵 ≠ 𝑃) & ⊢ (𝜑 → 𝐶 ≠ 𝑃) & ⊢ (𝜑 → 𝐷 ≠ 𝑃) & ⊢ (𝜑 → ((𝐴 − 𝑃)𝐹(𝐵 − 𝑃)) = π) & ⊢ (𝜑 → ((𝐶 − 𝑃)𝐹(𝐷 − 𝑃)) = π) & ⊢ (𝜑 → 𝑄 ∈ ℂ) & ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) & ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐶 − 𝑄))) & ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐷 − 𝑄))) ⇒ ⊢ (𝜑 → ((abs‘(𝑃 − 𝐴)) · (abs‘(𝑃 − 𝐵))) = ((abs‘(𝑃 − 𝐶)) · (abs‘(𝑃 − 𝐷)))) | ||
| Theorem | isosctrlem1ALT 44906 | Lemma for isosctr 26781. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart https://us.metamath.org/other/completeusersproof/isosctrlem1altvd.html 26781. As it is verified by the Metamath program, isosctrlem1ALT 44906 verifies https://us.metamath.org/other/completeusersproof/isosctrlem1altvd.html 44906. (Contributed by Alan Sare, 22-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≠ π) | ||
| Theorem | iunconnlem2 44907* | The indexed union of connected overlapping subspaces sharing a common point is connected. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart https://us.metamath.org/other/completeusersproof/iunconlem2vd.html. As it is verified by the Metamath program, iunconnlem2 44907 verifies https://us.metamath.org/other/completeusersproof/iunconlem2vd.html 44907. (Contributed by Alan Sare, 22-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜓 ↔ ((((((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑣 ∈ 𝐽) ∧ (𝑢 ∩ ∪ 𝑘 ∈ 𝐴 𝐵) ≠ ∅) ∧ (𝑣 ∩ ∪ 𝑘 ∈ 𝐴 𝐵) ≠ ∅) ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪ 𝑘 ∈ 𝐴 𝐵)) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣))) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ 𝑋) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐽 ↾t 𝐵) ∈ Conn) ⇒ ⊢ (𝜑 → (𝐽 ↾t ∪ 𝑘 ∈ 𝐴 𝐵) ∈ Conn) | ||
| Theorem | iunconnALT 44908* | The indexed union of connected overlapping subspaces sharing a common point is connected. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart https://us.metamath.org/other/completeusersproof/iunconaltvd.html. As it is verified by the Metamath program, iunconnALT 44908 verifies https://us.metamath.org/other/completeusersproof/iunconaltvd.html 44908. (Contributed by Alan Sare, 22-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ 𝑋) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐽 ↾t 𝐵) ∈ Conn) ⇒ ⊢ (𝜑 → (𝐽 ↾t ∪ 𝑘 ∈ 𝐴 𝐵) ∈ Conn) | ||
| Theorem | sineq0ALT 44909 | A complex number whose sine is zero is an integer multiple of π. The Virtual Deduction form of the proof is https://us.metamath.org/other/completeusersproof/sineq0altvd.html. The Metamath form of the proof is sineq0ALT 44909. The Virtual Deduction proof is based on Mario Carneiro's revision of Norm Megill's proof of sineq0 26483. The Virtual Deduction proof is verified by automatically transforming it into the Metamath form of the proof using completeusersproof, which is verified by the Metamath program. The proof of https://us.metamath.org/other/completeusersproof/sineq0altro.html 26483 is a form of the completed proof which preserves the Virtual Deduction proof's step numbers and their ordering. (Contributed by Alan Sare, 13-Jun-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (𝐴 / π) ∈ ℤ)) | ||
| Theorem | rspesbcd 44910* | Restricted quantifier version of spesbcd 3858. (Contributed by Eric Schmidt, 29-Sep-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) | ||
| Theorem | rext0 44911* | Nonempty existential quantification of a theorem is true. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| ⊢ 𝜑 ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ 𝐴 ≠ ∅) | ||
| Theorem | dfbi1ALTa 44912 | Version of dfbi1ALT 214 using ⊤ for step 2 and shortened using a1i 11, a2i 14, and con4i 114. (Contributed by Eric Schmidt, 22-Oct-2025.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | ||
| Theorem | simprimi 44913 | Inference associated with simprim 166. Proved exactly as step 11 is obtained from step 4 in dfbi1ALTa 44912. (Contributed by Eric Schmidt, 22-Oct-2025.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ ¬ (𝜑 → ¬ 𝜓) ⇒ ⊢ 𝜓 | ||
| Theorem | dfbi1ALTb 44914 | Further shorten dfbi1ALTa 44912 using simprimi 44913. (Contributed by Eric Schmidt, 22-Oct-2025.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | ||
| Syntax | wrelp 44915 | Extend the definition of a wff to include the relation-preserving property. (Contributed by Eric Schmidt, 11-Oct-2025.) |
| wff 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) | ||
| Definition | df-relp 44916* | Define the relation-preserving predicate. This is a viable notion of "homomorphism" corresponding to df-isom 6539. (Contributed by Eric Schmidt, 11-Oct-2025.) |
| ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ (𝐻:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | ||
| Theorem | relpeq1 44917 | Equality theorem for relation-preserving functions. (Contributed by Eric Schmidt, 11-Oct-2025.) |
| ⊢ (𝐻 = 𝐺 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐺 RelPres 𝑅, 𝑆(𝐴, 𝐵))) | ||
| Theorem | relpeq2 44918 | Equality theorem for relation-preserving functions. (Contributed by Eric Schmidt, 11-Oct-2025.) |
| ⊢ (𝑅 = 𝑇 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑇, 𝑆(𝐴, 𝐵))) | ||
| Theorem | relpeq3 44919 | Equality theorem for relation-preserving functions. (Contributed by Eric Schmidt, 11-Oct-2025.) |
| ⊢ (𝑆 = 𝑇 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑅, 𝑇(𝐴, 𝐵))) | ||
| Theorem | relpeq4 44920 | Equality theorem for relation-preserving functions. (Contributed by Eric Schmidt, 11-Oct-2025.) |
| ⊢ (𝐴 = 𝐶 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑅, 𝑆(𝐶, 𝐵))) | ||
| Theorem | relpeq5 44921 | Equality theorem for relation-preserving functions. (Contributed by Eric Schmidt, 11-Oct-2025.) |
| ⊢ (𝐵 = 𝐶 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐶))) | ||
| Theorem | nfrelp 44922 | Bound-variable hypothesis builder for a relation-preserving function. (Contributed by Eric Schmidt, 11-Oct-2025.) |
| ⊢ Ⅎ𝑥𝐻 & ⊢ Ⅎ𝑥𝑅 & ⊢ Ⅎ𝑥𝑆 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) | ||
| Theorem | relpf 44923 | A relation-preserving function is a function. (Contributed by Eric Schmidt, 11-Oct-2025.) |
| ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → 𝐻:𝐴⟶𝐵) | ||
| Theorem | relprel 44924 | A relation-preserving function preserves the relation. (Contributed by Eric Schmidt, 11-Oct-2025.) |
| ⊢ ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶𝑅𝐷 → (𝐻‘𝐶)𝑆(𝐻‘𝐷))) | ||
| Theorem | relpmin 44925 | A preimage of a minimal element under a relation-preserving function is minimal. Essentially one half of isomin 7329. (Contributed by Eric Schmidt, 11-Oct-2025.) |
| ⊢ ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) = ∅ → (𝐶 ∩ (◡𝑅 “ {𝐷})) = ∅)) | ||
| Theorem | relpfrlem 44926* | Lemma for relpfr 44927. Proved without using the Axiom of Replacement. This is isofrlem 7332 with weaker hypotheses. (Contributed by Eric Schmidt, 11-Oct-2025.) |
| ⊢ (𝜑 → 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵)) & ⊢ (𝜑 → (𝐻 “ 𝑥) ∈ V) ⇒ ⊢ (𝜑 → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) | ||
| Theorem | relpfr 44927 | If the image of a set under a relation-preserving function is well-founded, so is the set. See isofr 7334 for a bidirectional statement. A more general version of Lemma I.9.9 of [Kunen2] p. 47. (Contributed by Eric Schmidt, 11-Oct-2025.) |
| ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) | ||
| Theorem | orbitex 44928 | Orbits exist. Given a set 𝐴 and a function 𝐹, the orbit of 𝐴 under 𝐹 is the smallest set 𝑍 such that 𝐴 ∈ 𝑍 and 𝑍 is closed under 𝐹. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| ⊢ (rec(𝐹, 𝐴) “ ω) ∈ V | ||
| Theorem | orbitinit 44929 | A set is contained in its orbit. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ (rec(𝐹, 𝐴) “ ω)) | ||
| Theorem | orbitcl 44930 | The orbit under a function is closed under the function. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| ⊢ (𝐵 ∈ (rec(𝐹, 𝐴) “ ω) → (𝐹‘𝐵) ∈ (rec(𝐹, 𝐴) “ ω)) | ||
| Theorem | orbitclmpt 44931 | Version of orbitcl 44930 using maps-to notation. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝐷 & ⊢ 𝑍 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) “ ω) & ⊢ (𝑥 = 𝐵 → 𝐶 = 𝐷) ⇒ ⊢ ((𝐵 ∈ 𝑍 ∧ 𝐷 ∈ 𝑉) → 𝐷 ∈ 𝑍) | ||
| Theorem | trwf 44932 | The class of well-founded sets is transitive. (Contributed by Eric Schmidt, 9-Sep-2025.) |
| ⊢ Tr ∪ (𝑅1 “ On) | ||
| Theorem | rankrelp 44933 | The rank function preserves ∈. (Contributed by Eric Schmidt, 11-Oct-2025.) |
| ⊢ rank RelPres E , E (∪ (𝑅1 “ On), On) | ||
| Theorem | wffr 44934 | The class of well-founded sets is well-founded. Lemma I.9.24(2) of [Kunen2] p. 53. (Contributed by Eric Schmidt, 11-Oct-2025.) |
| ⊢ E Fr ∪ (𝑅1 “ On) | ||
| Theorem | trfr 44935 | A transitive class well-founded by ∈ is a subclass of the class of well-founded sets. Part of Lemma I.9.21 of [Kunen2] p. 53. (Contributed by Eric Schmidt, 26-Oct-2025.) |
| ⊢ ((Tr 𝐴 ∧ E Fr 𝐴) → 𝐴 ⊆ ∪ (𝑅1 “ On)) | ||
| Theorem | tcfr 44936 | A set is well-founded if and only if its transitive closure is well-founded by ∈. This characterization of well-founded sets is that in Definition I.9.20 of [Kunen2] p. 53. (Contributed by Eric Schmidt, 26-Oct-2025.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ E Fr (TC‘𝐴)) | ||
| Theorem | xpwf 44937 | The Cartesian product of two well-founded sets is well-founded. (Contributed by Eric Schmidt, 12-Sep-2025.) |
| ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → (𝐴 × 𝐵) ∈ ∪ (𝑅1 “ On)) | ||
| Theorem | dmwf 44938 | The domain of a well-founded set is well-founded. (Contributed by Eric Schmidt, 12-Sep-2025.) |
| ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → dom 𝐴 ∈ ∪ (𝑅1 “ On)) | ||
| Theorem | rnwf 44939 | The range of a well-founded set is well-founded. (Contributed by Eric Schmidt, 12-Sep-2025.) |
| ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ran 𝐴 ∈ ∪ (𝑅1 “ On)) | ||
| Theorem | relwf 44940 | A relation is a well-founded set iff its domain and range are. (Contributed by Eric Schmidt, 29-Sep-2025.) |
| ⊢ (Rel 𝑅 → (𝑅 ∈ ∪ (𝑅1 “ On) ↔ (dom 𝑅 ∈ ∪ (𝑅1 “ On) ∧ ran 𝑅 ∈ ∪ (𝑅1 “ On)))) | ||
| Theorem | ralabso 44941* | Simplification of restricted quantification in a transitive class. When 𝜑 is quantifier-free, this shows that the formula ∀𝑥 ∈ 𝑦𝜑 is absolute for transitive models, which is a particular case of Lemma I.16.2 of [Kunen2] p. 95. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| ⊢ ((Tr 𝑀 ∧ 𝐴 ∈ 𝑀) → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 → 𝜑))) | ||
| Theorem | rexabso 44942* | Simplification of restricted quantification in a transitive class. When 𝜑 is quantifier-free, this shows that the formula ∃𝑥 ∈ 𝑦𝜑 is absolute for transitive models, which is a particular case of Lemma I.16.2 of [Kunen2] p. 95. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| ⊢ ((Tr 𝑀 ∧ 𝐴 ∈ 𝑀) → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 ∧ 𝜑))) | ||
| Theorem | ralabsod 44943* | Deduction form of ralabso 44941. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| ⊢ (𝜑 → Tr 𝑀) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑀) → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 → 𝜓))) | ||
| Theorem | rexabsod 44944* | Deduction form of rexabso 44942. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| ⊢ (𝜑 → Tr 𝑀) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑀) → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 ∧ 𝜓))) | ||
| Theorem | ralabsobidv 44945* | Formula-building lemma for proving absoluteness results. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| ⊢ (𝜑 → Tr 𝑀) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑀) → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 → 𝜒))) | ||
| Theorem | rexabsobidv 44946* | Formula-building lemma for proving absoluteness results. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| ⊢ (𝜑 → Tr 𝑀) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑀) → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 ∧ 𝜒))) | ||
| Theorem | ssabso 44947* | The notion "𝑥 is a subset of 𝑦 " is absolute for transitive models. Compare Example I.16.3 of [Kunen2] p. 96 and the following discussion. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| ⊢ ((Tr 𝑀 ∧ 𝐴 ∈ 𝑀) → (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵))) | ||
| Theorem | disjabso 44948* | Disjointness is absolute for transitive models. Compare Example I.16.3 of [Kunen2] p. 96 and the following discussion. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| ⊢ ((Tr 𝑀 ∧ 𝐴 ∈ 𝑀) → ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵))) | ||
| Theorem | n0abso 44949* | Nonemptiness is absolute for transitive models. Compare Example I.16.3 of [Kunen2] p. 96 and the following discussion. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| ⊢ ((Tr 𝑀 ∧ 𝐴 ∈ 𝑀) → (𝐴 ≠ ∅ ↔ ∃𝑥 ∈ 𝑀 𝑥 ∈ 𝐴)) | ||
| Theorem | traxext 44950* | A transitive class models the Axiom of Extensionality ax-ext 2707. Lemma II.2.4(1) of [Kunen2] p. 111. (Contributed by Eric Schmidt, 11-Sep-2025.) |
| ⊢ (Tr 𝑀 → ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦)) | ||
| Theorem | modelaxreplem1 44951* | Lemma for modelaxrep 44954. We show that 𝑀 is closed under taking subsets. (Contributed by Eric Schmidt, 29-Sep-2025.) |
| ⊢ (𝜓 → 𝑥 ⊆ 𝑀) & ⊢ (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓 ∈ 𝑀 ∧ ran 𝑓 ⊆ 𝑀) → ran 𝑓 ∈ 𝑀)) & ⊢ (𝜓 → ∅ ∈ 𝑀) & ⊢ (𝜓 → 𝑥 ∈ 𝑀) & ⊢ 𝐴 ⊆ 𝑥 ⇒ ⊢ (𝜓 → 𝐴 ∈ 𝑀) | ||
| Theorem | modelaxreplem2 44952* | Lemma for modelaxrep 44954. We define a class 𝐹 and show that the antecedent of Replacement implies that 𝐹 is a function. We use Replacement (in the form of funex 7210) to show that 𝐹 exists. Then we show that, under our hypotheses, the range of 𝐹 is a member of 𝑀. (Contributed by Eric Schmidt, 29-Sep-2025.) |
| ⊢ (𝜓 → 𝑥 ⊆ 𝑀) & ⊢ (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓 ∈ 𝑀 ∧ ran 𝑓 ⊆ 𝑀) → ran 𝑓 ∈ 𝑀)) & ⊢ (𝜓 → ∅ ∈ 𝑀) & ⊢ (𝜓 → 𝑥 ∈ 𝑀) & ⊢ Ⅎ𝑤𝜓 & ⊢ Ⅎ𝑧𝜓 & ⊢ Ⅎ𝑧𝐹 & ⊢ 𝐹 = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ 𝑥 ∧ (𝑧 ∈ 𝑀 ∧ ∀𝑦𝜑))} & ⊢ (𝜓 → (𝑤 ∈ 𝑀 → ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 (∀𝑦𝜑 → 𝑧 = 𝑦))) ⇒ ⊢ (𝜓 → ran 𝐹 ∈ 𝑀) | ||
| Theorem | modelaxreplem3 44953* | Lemma for modelaxrep 44954. We show that the consequent of Replacement is satisfied with ran 𝐹 as the value of 𝑦. (Contributed by Eric Schmidt, 29-Sep-2025.) |
| ⊢ (𝜓 → 𝑥 ⊆ 𝑀) & ⊢ (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓 ∈ 𝑀 ∧ ran 𝑓 ⊆ 𝑀) → ran 𝑓 ∈ 𝑀)) & ⊢ (𝜓 → ∅ ∈ 𝑀) & ⊢ (𝜓 → 𝑥 ∈ 𝑀) & ⊢ Ⅎ𝑤𝜓 & ⊢ Ⅎ𝑧𝜓 & ⊢ Ⅎ𝑧𝐹 & ⊢ 𝐹 = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ 𝑥 ∧ (𝑧 ∈ 𝑀 ∧ ∀𝑦𝜑))} & ⊢ (𝜓 → (𝑤 ∈ 𝑀 → ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 (∀𝑦𝜑 → 𝑧 = 𝑦))) ⇒ ⊢ (𝜓 → ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑀 (𝑤 ∈ 𝑥 ∧ ∀𝑦𝜑))) | ||
| Theorem | modelaxrep 44954* |
Conditions which guarantee that a class models the Axiom of Replacement
ax-rep 5249. Similar to Lemma II.2.4(6) of [Kunen2] p. 111. The first
two hypotheses are those in Kunen. The reason for the third hypothesis
that our version of Replacement is different from Kunen's (which is
zfrep6 7951). If we assumed Regularity, we could
eliminate this extra
hypothesis, since under Regularity, the empty set is a member of every
non-empty transitive class.
Note that, to obtain the relativization of an instance of Replacement to 𝑀, the formula ∀𝑦𝜑 would need to be replaced with ∀𝑦 ∈ 𝑀𝜒, where 𝜒 is 𝜑 with all quantifiers relativized to 𝑀. However, we can obtain this by using 𝑦 ∈ 𝑀 ∧ 𝜒 for 𝜑 in this theorem, so it does establish that all instances of Replacement hold in 𝑀. (Contributed by Eric Schmidt, 29-Sep-2025.) |
| ⊢ (𝜓 → Tr 𝑀) & ⊢ (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓 ∈ 𝑀 ∧ ran 𝑓 ⊆ 𝑀) → ran 𝑓 ∈ 𝑀)) & ⊢ (𝜓 → ∅ ∈ 𝑀) ⇒ ⊢ (𝜓 → ∀𝑥 ∈ 𝑀 (∀𝑤 ∈ 𝑀 ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 (∀𝑦𝜑 → 𝑧 = 𝑦) → ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑀 (𝑤 ∈ 𝑥 ∧ ∀𝑦𝜑)))) | ||
| Theorem | ssclaxsep 44955* |
A class that is closed under subsets models the Axiom of Separation
ax-sep 5266. Lemma II.2.4(3) of [Kunen2] p. 111.
Note that, to obtain the relativization of an instance of Separation to 𝑀, the formula 𝜑 would need to be replaced with its relativization to 𝑀. However, this new formula is a valid substitution for 𝜑, so this theorem does establish that all instances of Separation hold in 𝑀. (Contributed by Eric Schmidt, 29-Sep-2025.) |
| ⊢ (∀𝑧 ∈ 𝑀 𝒫 𝑧 ⊆ 𝑀 → ∀𝑧 ∈ 𝑀 ∃𝑦 ∈ 𝑀 ∀𝑥 ∈ 𝑀 (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑))) | ||
| Theorem | 0elaxnul 44956* | A class that contains the empty set models the Null Set Axiom ax-nul 5276. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| ⊢ (∅ ∈ 𝑀 → ∃𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ¬ 𝑦 ∈ 𝑥) | ||
| Theorem | pwclaxpow 44957* | Suppose 𝑀 is a transitive class that is closed under power sets intersected with 𝑀. Then, 𝑀 models the Axiom of Power Sets ax-pow 5335. One direction of Lemma II.2.8 of [Kunen2] p. 113. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| ⊢ ((Tr 𝑀 ∧ ∀𝑥 ∈ 𝑀 (𝒫 𝑥 ∩ 𝑀) ∈ 𝑀) → ∀𝑥 ∈ 𝑀 ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 (∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) | ||
| Theorem | prclaxpr 44958* | A class that is closed under the pairing operation models the Axiom of Pairing ax-pr 5402. Lemma II.2.4(4) of [Kunen2] p. 111. (Contributed by Eric Schmidt, 29-Sep-2025.) |
| ⊢ (∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 {𝑥, 𝑦} ∈ 𝑀 → ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∃𝑧 ∈ 𝑀 ∀𝑤 ∈ 𝑀 ((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧)) | ||
| Theorem | uniclaxun 44959* | A class that is closed under the union operation models the Axiom of Union ax-un 7727. Lemma II.2.4(5) of [Kunen2] p. 111. (Contributed by Eric Schmidt, 1-Oct-2025.) |
| ⊢ (∀𝑥 ∈ 𝑀 ∪ 𝑥 ∈ 𝑀 → ∀𝑥 ∈ 𝑀 ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 (∃𝑤 ∈ 𝑀 (𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) | ||
| Theorem | sswfaxreg 44960* | A subclass of the class of well-founded sets models the Axiom of Regularity ax-reg 9604. Lemma II.2.4(2) of [Kunen2] p. 111. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| ⊢ (𝑀 ⊆ ∪ (𝑅1 “ On) → ∀𝑥 ∈ 𝑀 (∃𝑦 ∈ 𝑀 𝑦 ∈ 𝑥 → ∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)))) | ||
| Theorem | omssaxinf2 44961* | A class that contains all ordinals up to and including ω models the Axiom of Infinity ax-inf2 9653. The antecedent of this theorem is not enough to guarantee that the class models the alternate axiom ax-inf 9650. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| ⊢ ((ω ⊆ 𝑀 ∧ ω ∈ 𝑀) → ∃𝑥 ∈ 𝑀 (∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 → ∃𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 ∧ ∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))))) | ||
| Theorem | omelaxinf2 44962* |
A transitive class that contains ω models the
Axiom of Infinity
ax-inf2 9653. Lemma II.2.11(7) of [Kunen2] p. 114. Kunen has the
additional hypotheses that the Extensionality, Separation, Pairing, and
Union axioms are true in 𝑀. This, apparently, is because
Kunen's
statement of the Axiom of Infinity uses the defined notions ∅ and
suc, and these axioms guarantee that these
notions are
well-defined. When we state the axiom using primitives only, the need
for these hypotheses disappears.
The antecedent of this theorem is not enough to guarantee that the class models the alternate axiom ax-inf 9650. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| ⊢ ((Tr 𝑀 ∧ ω ∈ 𝑀) → ∃𝑥 ∈ 𝑀 (∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 → ∃𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 ∧ ∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))))) | ||
| Theorem | dfac5prim 44963* | dfac5 10141 expanded into primitives. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| ⊢ (CHOICE ↔ ∀𝑥((∀𝑧(𝑧 ∈ 𝑥 → ∃𝑤 𝑤 ∈ 𝑧) ∧ ∀𝑧∀𝑤((𝑧 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦(𝑦 ∈ 𝑧 → ¬ 𝑦 ∈ 𝑤)))) → ∃𝑦∀𝑧(𝑧 ∈ 𝑥 → ∃𝑤∀𝑣((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) ↔ 𝑣 = 𝑤)))) | ||
| Theorem | ac8prim 44964* | ac8 10504 expanded into primitives. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| ⊢ ((∀𝑧(𝑧 ∈ 𝑥 → ∃𝑤 𝑤 ∈ 𝑧) ∧ ∀𝑧∀𝑤((𝑧 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦(𝑦 ∈ 𝑧 → ¬ 𝑦 ∈ 𝑤)))) → ∃𝑦∀𝑧(𝑧 ∈ 𝑥 → ∃𝑤∀𝑣((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) ↔ 𝑣 = 𝑤))) | ||
| Theorem | modelac8prim 44965* |
If 𝑀 is a transitive class, then the
following are equivalent. (1)
Every nonempty set 𝑥 ∈ 𝑀 of pairwise disjoint nonempty sets
has a
choice set in 𝑀. (2) The class 𝑀 models
the Axiom of Choice,
in the form ac8prim 44964.
Lemma II.2.11(7) of [Kunen2] p. 114. Kunen has the additional hypotheses that the Extensionality, Separation, Pairing, and Union axioms are true in 𝑀. This, apparently, is because Kunen's statement of the Axiom of Choice uses defined notions, including ∅ and ∩, and these axioms guarantee that these notions are well-defined. When we state the axiom using primitives only, the need for these hypotheses disappears. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| ⊢ (Tr 𝑀 → (∀𝑥 ∈ 𝑀 ((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) ↔ ∀𝑥 ∈ 𝑀 ((∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 → ∃𝑤 ∈ 𝑀 𝑤 ∈ 𝑧) ∧ ∀𝑧 ∈ 𝑀 ∀𝑤 ∈ 𝑀 ((𝑧 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦 ∈ 𝑀 (𝑦 ∈ 𝑧 → ¬ 𝑦 ∈ 𝑤)))) → ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 → ∃𝑤 ∈ 𝑀 ∀𝑣 ∈ 𝑀 ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) ↔ 𝑣 = 𝑤))))) | ||
| Theorem | wfaxext 44966* |
The class of well-founded sets models the Axiom of Extensionality
ax-ext 2707. Part of Corollary II.2.5 of [Kunen2] p. 112.
This is the first of a series of theorems showing that all the axioms of ZFC hold in the class of well-founded sets, which we here denote by 𝑊. More precisely, for each axiom of ZFC, we obtain a provable statement if we restrict all quantifiers to 𝑊 (including implicit universal quantifiers on free variables). None of these proofs use the Axiom of Regularity. In particular, the Axiom of Regularity itself is proved to hold in 𝑊 without using Regularity. Further, the Axiom of Choice is used only in the proof that Choice holds in 𝑊. This has the consequence that any theorem of ZF (possibly proved using Regularity) can be proved, without using Regularity, to hold in 𝑊. This gives us a relative consistency result: If ZF without Regularity is consistent, so is ZF itself. Similarly, if ZFC without Regularity is consistent, so is ZFC itself. These consistency results are metatheorems and are part of Theorem II.2.13 of [Kunen2] p. 114. (Contributed by Eric Schmidt, 11-Sep-2025.) (Revised by Eric Schmidt, 29-Sep-2025.) |
| ⊢ 𝑊 = ∪ (𝑅1 “ On) ⇒ ⊢ ∀𝑥 ∈ 𝑊 ∀𝑦 ∈ 𝑊 (∀𝑧 ∈ 𝑊 (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦) | ||
| Theorem | wfaxrep 44967* | The class of well-founded sets models the Axiom of Replacement ax-rep 5249. Actually, our statement is stronger, since it is an instance of Replacement only when all quantifiers in ∀𝑦𝜑 are relativized to 𝑊. Essentially part of Corollary II.2.5 of [Kunen2] p. 112, but note that our Replacement is different from Kunen's. (Contributed by Eric Schmidt, 29-Sep-2025.) |
| ⊢ 𝑊 = ∪ (𝑅1 “ On) ⇒ ⊢ ∀𝑥 ∈ 𝑊 (∀𝑤 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (∀𝑦𝜑 → 𝑧 = 𝑦) → ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑊 (𝑤 ∈ 𝑥 ∧ ∀𝑦𝜑))) | ||
| Theorem | wfaxsep 44968* | The class of well-founded sets models the Axiom of Separation ax-sep 5266. Actually, our statement is stronger, since it is an instance of Separation only when all quantifiers in 𝜑 are relativized to 𝑊. Part of Corollary II.2.5 of [Kunen2] p. 112. (Contributed by Eric Schmidt, 29-Sep-2025.) |
| ⊢ 𝑊 = ∪ (𝑅1 “ On) ⇒ ⊢ ∀𝑧 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑥 ∈ 𝑊 (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) | ||
| Theorem | wfaxnul 44969* | The class of well-founded sets models the Null Set Axiom ax-nul 5276. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| ⊢ 𝑊 = ∪ (𝑅1 “ On) ⇒ ⊢ ∃𝑥 ∈ 𝑊 ∀𝑦 ∈ 𝑊 ¬ 𝑦 ∈ 𝑥 | ||
| Theorem | wfaxpow 44970* | The class of well-founded sets models the Axioms of Power Sets. Part of Corollary II.2.9 of [Kunen2] p. 113. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| ⊢ 𝑊 = ∪ (𝑅1 “ On) ⇒ ⊢ ∀𝑥 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (∀𝑤 ∈ 𝑊 (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | ||
| Theorem | wfaxpr 44971* | The class of well-founded sets models the Axiom of Pairing ax-pr 5402. Part of Corollary II.2.5 of [Kunen2] p. 112. (Contributed by Eric Schmidt, 29-Sep-2025.) |
| ⊢ 𝑊 = ∪ (𝑅1 “ On) ⇒ ⊢ ∀𝑥 ∈ 𝑊 ∀𝑦 ∈ 𝑊 ∃𝑧 ∈ 𝑊 ∀𝑤 ∈ 𝑊 ((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) | ||
| Theorem | wfaxun 44972* | The class of well-founded sets models the Axiom of Union ax-un 7727. Part of Corollary II.2.5 of [Kunen2] p. 112. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| ⊢ 𝑊 = ∪ (𝑅1 “ On) ⇒ ⊢ ∀𝑥 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (∃𝑤 ∈ 𝑊 (𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | ||
| Theorem | wfaxreg 44973* | The class of well-founded sets models the Axiom of Regularity ax-reg 9604. Part of Corollary II.2.5 of [Kunen2] p. 112. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| ⊢ 𝑊 = ∪ (𝑅1 “ On) ⇒ ⊢ ∀𝑥 ∈ 𝑊 (∃𝑦 ∈ 𝑊 𝑦 ∈ 𝑥 → ∃𝑦 ∈ 𝑊 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑊 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) | ||
| Theorem | wfaxinf2 44974* | The class of well-founded sets models the Axiom of Infinity ax-inf2 9653. Part of Corollary II.2.12 of [Kunen2] p. 114. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| ⊢ 𝑊 = ∪ (𝑅1 “ On) ⇒ ⊢ ∃𝑥 ∈ 𝑊 (∃𝑦 ∈ 𝑊 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑊 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦 ∈ 𝑊 (𝑦 ∈ 𝑥 → ∃𝑧 ∈ 𝑊 (𝑧 ∈ 𝑥 ∧ ∀𝑤 ∈ 𝑊 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) | ||
| Theorem | wfac8prim 44975* | The class of well-founded sets 𝑊 models the Axiom of Choice. Since the previous theorems show that all the ZF axioms hold in 𝑊, we may use any statement that ZF proves is equivalent to Choice to prove this. We use ac8prim 44964. Part of Corollary II.2.12 of [Kunen2] p. 114. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| ⊢ 𝑊 = ∪ (𝑅1 “ On) ⇒ ⊢ ∀𝑥 ∈ 𝑊 ((∀𝑧 ∈ 𝑊 (𝑧 ∈ 𝑥 → ∃𝑤 ∈ 𝑊 𝑤 ∈ 𝑧) ∧ ∀𝑧 ∈ 𝑊 ∀𝑤 ∈ 𝑊 ((𝑧 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦 ∈ 𝑊 (𝑦 ∈ 𝑧 → ¬ 𝑦 ∈ 𝑤)))) → ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (𝑧 ∈ 𝑥 → ∃𝑤 ∈ 𝑊 ∀𝑣 ∈ 𝑊 ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) ↔ 𝑣 = 𝑤))) | ||
| Theorem | brpermmodel 44976 | The membership relation in a permutation model. We use a permutation 𝐹 of the universe to define a relation 𝑅 that serves as the membership relation in our model. The conclusion of this theorem is Definition II.9.1 of [Kunen2] p. 148. All the axioms of ZFC except for Regularity hold in permutation models, and Regularity will be false if 𝐹 is chosen appropriately. Thus, permutation models can be used to show that Regularity does not follow from the other axioms (with the usual proviso that the axioms are consistent). (Contributed by Eric Schmidt, 6-Nov-2025.) |
| ⊢ 𝐹:V–1-1-onto→V & ⊢ 𝑅 = (◡𝐹 ∘ E ) & ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴𝑅𝐵 ↔ 𝐴 ∈ (𝐹‘𝐵)) | ||
| Theorem | brpermmodelcnv 44977 | Ordinary membership expressed in terms of the permutation model's membership relation. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| ⊢ 𝐹:V–1-1-onto→V & ⊢ 𝑅 = (◡𝐹 ∘ E ) & ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴𝑅(◡𝐹‘𝐵) ↔ 𝐴 ∈ 𝐵) | ||
| Theorem | permaxext 44978* | The Axiom of Extensionality ax-ext 2707 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| ⊢ 𝐹:V–1-1-onto→V & ⊢ 𝑅 = (◡𝐹 ∘ E ) ⇒ ⊢ (∀𝑧(𝑧𝑅𝑥 ↔ 𝑧𝑅𝑦) → 𝑥 = 𝑦) | ||
| Theorem | permaxrep 44979* |
The Axiom of Replacement ax-rep 5249 holds in permutation models. Part
of Exercise II.9.2 of [Kunen2] p. 148.
Note that, to prove that an instance of Replacement holds in the model, 𝜑 would need have all instances of ∈ replaced with 𝑅. But this still results in an instance of this theorem, so we do establish that Replacement holds. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| ⊢ 𝐹:V–1-1-onto→V & ⊢ 𝑅 = (◡𝐹 ∘ E ) ⇒ ⊢ (∀𝑤∃𝑦∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑦) → ∃𝑦∀𝑧(𝑧𝑅𝑦 ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑))) | ||
| Theorem | permaxsep 44980* |
The Axiom of Separation ax-sep 5266 holds in permutation models. Part of
Exercise II.9.2 of [Kunen2] p. 148.
Note that, to prove that an instance of Separation holds in the model, 𝜑 would need have all instances of ∈ replaced with 𝑅. But this still results in an instance of this theorem, so we do establish that Separation holds. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| ⊢ 𝐹:V–1-1-onto→V & ⊢ 𝑅 = (◡𝐹 ∘ E ) ⇒ ⊢ ∃𝑦∀𝑥(𝑥𝑅𝑦 ↔ (𝑥𝑅𝑧 ∧ 𝜑)) | ||
| Theorem | permaxnul 44981* | The Null Set Axiom ax-nul 5276 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| ⊢ 𝐹:V–1-1-onto→V & ⊢ 𝑅 = (◡𝐹 ∘ E ) ⇒ ⊢ ∃𝑥∀𝑦 ¬ 𝑦𝑅𝑥 | ||
| Theorem | permaxpow 44982* | The Axiom of Power Sets ax-pow 5335 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| ⊢ 𝐹:V–1-1-onto→V & ⊢ 𝑅 = (◡𝐹 ∘ E ) ⇒ ⊢ ∃𝑦∀𝑧(∀𝑤(𝑤𝑅𝑧 → 𝑤𝑅𝑥) → 𝑧𝑅𝑦) | ||
| Theorem | permaxpr 44983* | The Axiom of Pairing ax-pr 5402 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| ⊢ 𝐹:V–1-1-onto→V & ⊢ 𝑅 = (◡𝐹 ∘ E ) ⇒ ⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤𝑅𝑧) | ||
| Theorem | permaxun 44984* | The Axiom of Union ax-un 7727 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| ⊢ 𝐹:V–1-1-onto→V & ⊢ 𝑅 = (◡𝐹 ∘ E ) ⇒ ⊢ ∃𝑦∀𝑧(∃𝑤(𝑧𝑅𝑤 ∧ 𝑤𝑅𝑥) → 𝑧𝑅𝑦) | ||
| Theorem | permaxinf2lem 44985* | Lemma for permaxinf2 44986. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| ⊢ 𝐹:V–1-1-onto→V & ⊢ 𝑅 = (◡𝐹 ∘ E ) & ⊢ 𝑍 = (rec((𝑣 ∈ V ↦ (◡𝐹‘((𝐹‘𝑣) ∪ {𝑣}))), (◡𝐹‘∅)) “ ω) ⇒ ⊢ ∃𝑥(∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ∧ ∀𝑦(𝑦𝑅𝑥 → ∃𝑧(𝑧𝑅𝑥 ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦 ∨ 𝑤 = 𝑦))))) | ||
| Theorem | permaxinf2 44986* | The Axiom of Infinity ax-inf2 9653 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| ⊢ 𝐹:V–1-1-onto→V & ⊢ 𝑅 = (◡𝐹 ∘ E ) ⇒ ⊢ ∃𝑥(∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ∧ ∀𝑦(𝑦𝑅𝑥 → ∃𝑧(𝑧𝑅𝑥 ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦 ∨ 𝑤 = 𝑦))))) | ||
| Theorem | evth2f 44987* | A version of evth2 24908 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑦𝐹 & ⊢ Ⅎ𝑥𝑋 & ⊢ Ⅎ𝑦𝑋 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝑋 ≠ ∅) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑦)) | ||
| Theorem | elunif 44988* | A version of eluni 4886 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) | ||
| Theorem | rzalf 44989 | A version of rzal 4484 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑥 𝐴 = ∅ ⇒ ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | fvelrnbf 44990 | A version of fvelrnb 6938 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝐹 ⇒ ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵)) | ||
| Theorem | rfcnpre1 44991 | If F is a continuous function with respect to the standard topology, then the preimage A of the values greater than a given extended real B is an open set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝜑 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐴 = {𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)} & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐽) | ||
| Theorem | ubelsupr 44992* | If U belongs to A and U is an upper bound, then U is the sup of A. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈) → 𝑈 = sup(𝐴, ℝ, < )) | ||
| Theorem | fsumcnf 44993* | A finite sum of functions to complex numbers from a common topological space is continuous, without disjoint var constraint x ph. The class expression for B normally contains free variables k and x to index it. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | mulltgt0 44994 | The product of a negative and a positive number is negative. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 · 𝐵) < 0) | ||
| Theorem | rspcegf 44995 | A version of rspcev 3601 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥 ∈ 𝐵 𝜑) | ||
| Theorem | rabexgf 44996 | A version of rabexg 5307 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | ||
| Theorem | fcnre 44997 | A function continuous with respect to the standard topology, is a real mapping. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑇 = ∪ 𝐽 & ⊢ 𝐶 = (𝐽 Cn 𝐾) & ⊢ (𝜑 → 𝐹 ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐹:𝑇⟶ℝ) | ||
| Theorem | sumsnd 44998* | A sum of a singleton is the term. The deduction version of sumsn 15760. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ (𝜑 → Ⅎ𝑘𝐵) & ⊢ Ⅎ𝑘𝜑 & ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝑀 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) | ||
| Theorem | evthf 44999* | A version of evth 24907 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑦𝐹 & ⊢ Ⅎ𝑥𝑋 & ⊢ Ⅎ𝑦𝑋 & ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝑋 ≠ ∅) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘𝑦) ≤ (𝐹‘𝑥)) | ||
| Theorem | cnfex 45000 | The class of continuous functions between two topologies is a set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |