Theorem List for Metamath Proof Explorer - 44901-45000 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | hbalgVD 44901 |
Virtual deduction proof of hbalg 44552.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbalg 44552
is hbalgVD 44901 without virtual deductions and was automatically derived
from hbalgVD 44901. (Contributed by Alan Sare, 8-Feb-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ ( ∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦(𝜑
→ ∀𝑥𝜑) )
| | 2:1: | ⊢ ( ∀𝑦(𝜑 → ∀𝑥𝜑) ▶ (∀𝑦𝜑
→ ∀𝑦∀𝑥𝜑) )
| | 3:: | ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑)
| | 4:2,3: | ⊢ ( ∀𝑦(𝜑 → ∀𝑥𝜑) ▶ (∀𝑦𝜑
→ ∀𝑥∀𝑦𝜑) )
| | 5:: | ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦∀𝑦(
𝜑 → ∀𝑥𝜑))
| | 6:5,4: | ⊢ ( ∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦(∀
𝑦𝜑 → ∀𝑥∀𝑦𝜑) )
| | qed:6: | ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦
𝜑 → ∀𝑥∀𝑦𝜑))
|
|
| ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) |
| |
| Theorem | hbexgVD 44902 |
Virtual deduction proof of hbexg 44553.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbexg 44553
is hbexgVD 44902 without virtual deductions and was automatically derived
from hbexgVD 44902. (Contributed by Alan Sare, 8-Feb-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
∀𝑦(𝜑 → ∀𝑥𝜑) )
| | 2:1: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦
∀𝑥(𝜑 → ∀𝑥𝜑) )
| | 3:2: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
(𝜑 → ∀𝑥𝜑) )
| | 4:3: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
(¬ 𝜑 → ∀𝑥¬ 𝜑) )
| | 5:: | ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ↔ ∀𝑦
∀𝑥(𝜑 → ∀𝑥𝜑))
| | 6:: | ⊢ (∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑦
∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑))
| | 7:5: | ⊢ (∀𝑦∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ↔
∀𝑦∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑))
| | 8:5,6,7: | ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦
∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑))
| | 9:8,4: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦
∀𝑥(¬ 𝜑 → ∀𝑥¬ 𝜑) )
| | 10:9: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
∀𝑦(¬ 𝜑 → ∀𝑥¬ 𝜑) )
| | 11:10: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦
(¬ 𝜑 → ∀𝑥¬ 𝜑) )
| | 12:11: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦
(∀𝑦¬ 𝜑 → ∀𝑥∀𝑦¬ 𝜑) )
| | 13:12: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ (∀
𝑦¬ 𝜑 → ∀𝑥∀𝑦¬ 𝜑) )
| | 14:: | ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥
∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑))
| | 15:13,14: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
(∀𝑦¬ 𝜑 → ∀𝑥∀𝑦¬ 𝜑) )
| | 16:15: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
(¬ ∀𝑦¬ 𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑) )
| | 17:16: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ (¬
∀𝑦¬ 𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑) )
| | 18:: | ⊢ (∃𝑦𝜑 ↔ ¬ ∀𝑦¬ 𝜑)
| | 19:17,18: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ (∃
𝑦𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑) )
| | 20:18: | ⊢ (∀𝑥∃𝑦𝜑 ↔ ∀𝑥¬ ∀𝑦¬ 𝜑)
| | 21:19,20: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ (∃
𝑦𝜑 → ∀𝑥∃𝑦𝜑) )
| | 22:8,21: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦
(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) )
| | 23:14,22: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
∀𝑦(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) )
| | qed:23: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
∀𝑦(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) )
|
|
| ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥∀𝑦(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑)) |
| |
| Theorem | ax6e2eqVD 44903* |
The following User's Proof is a Virtual Deduction proof (see wvd1 44566)
completed automatically by a Metamath tools program invoking mmj2 and
the Metamath Proof Assistant. ax6e2eq 44554 is ax6e2eqVD 44903 without virtual
deductions and was automatically derived from ax6e2eqVD 44903.
(Contributed by Alan Sare, 25-Mar-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∀𝑥𝑥 = 𝑦 )
| | 2:: | ⊢ ( ∀𝑥𝑥 = 𝑦 , 𝑥 = 𝑢 ▶ 𝑥 = 𝑢 )
| | 3:1: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ 𝑥 = 𝑦 )
| | 4:2,3: | ⊢ ( ∀𝑥𝑥 = 𝑦 , 𝑥 = 𝑢 ▶ 𝑦 = 𝑢 )
| | 5:2,4: | ⊢ ( ∀𝑥𝑥 = 𝑦 , 𝑥 = 𝑢 ▶ (𝑥 = 𝑢 ∧ 𝑦
= 𝑢) )
| | 6:5: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ (𝑥 = 𝑢 → (𝑥 = 𝑢 ∧
𝑦 = 𝑢)) )
| | 7:6: | ⊢ (∀𝑥𝑥 = 𝑦 → (𝑥 = 𝑢 → (𝑥 = 𝑢 ∧ 𝑦
= 𝑢)))
| | 8:7: | ⊢ (∀𝑥∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑢 → (
𝑥 = 𝑢 ∧ 𝑦 = 𝑢)))
| | 9:: | ⊢ (∀𝑥𝑥 = 𝑦 ↔ ∀𝑥∀𝑥𝑥 = 𝑦)
| | 10:8,9: | ⊢ (∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑢 → (𝑥 = 𝑢
∧ 𝑦 = 𝑢)))
| | 11:1,10: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∀𝑥(𝑥 = 𝑢 → (𝑥 =
𝑢 ∧ 𝑦 = 𝑢)) )
| | 12:11: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ (∃𝑥𝑥 = 𝑢 → ∃𝑥
(𝑥 = 𝑢 ∧ 𝑦 = 𝑢)) )
| | 13:: | ⊢ ∃𝑥𝑥 = 𝑢
| | 14:13,12: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢
) )
| | 140:14: | ⊢ (∀𝑥𝑥 = 𝑦 → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢)
)
| | 141:140: | ⊢ (∀𝑥𝑥 = 𝑦 → ∀𝑥∃𝑥(𝑥 = 𝑢 ∧ 𝑦
= 𝑢))
| | 15:1,141: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∀𝑥∃𝑥(𝑥 = 𝑢 ∧
𝑦 = 𝑢) )
| | 16:1,15: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∀𝑦∃𝑥(𝑥 = 𝑢 ∧
𝑦 = 𝑢) )
| | 17:16: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∃𝑦∃𝑥(𝑥 = 𝑢 ∧
𝑦 = 𝑢) )
| | 18:17: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∃𝑥∃𝑦(𝑥 = 𝑢 ∧
𝑦 = 𝑢) )
| | 19:: | ⊢ ( 𝑢 = 𝑣 ▶ 𝑢 = 𝑣 )
| | 20:: | ⊢ ( 𝑢 = 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ▶ (𝑥 =
𝑢 ∧ 𝑦 = 𝑢) )
| | 21:20: | ⊢ ( 𝑢 = 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ▶ 𝑦 = 𝑢
)
| | 22:19,21: | ⊢ ( 𝑢 = 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ▶ 𝑦 = 𝑣
)
| | 23:20: | ⊢ ( 𝑢 = 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ▶ 𝑥 = 𝑢
)
| | 24:22,23: | ⊢ ( 𝑢 = 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ▶ (𝑥 =
𝑢 ∧ 𝑦 = 𝑣) )
| | 25:24: | ⊢ ( 𝑢 = 𝑣 ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → (
𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| | 26:25: | ⊢ ( 𝑢 = 𝑣 ▶ ∀𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑢)
→ (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| | 27:26: | ⊢ ( 𝑢 = 𝑣 ▶ (∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑢)
→ ∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| | 28:27: | ⊢ ( 𝑢 = 𝑣 ▶ ∀𝑥(∃𝑦(𝑥 = 𝑢 ∧ 𝑦 =
𝑢) → ∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| | 29:28: | ⊢ ( 𝑢 = 𝑣 ▶ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 =
𝑢) → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| | 30:29: | ⊢ (𝑢 = 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑢
) → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))
| | 31:18,30: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ (𝑢 = 𝑣 → ∃𝑥∃𝑦
(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| | qed:31: | ⊢ (∀𝑥𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃𝑦(
𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))
|
|
| ⊢ (∀𝑥 𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) |
| |
| Theorem | ax6e2ndVD 44904* |
The following User's Proof is a Virtual Deduction proof (see wvd1 44566)
completed automatically by a Metamath tools program invoking mmj2 and
the Metamath Proof Assistant. ax6e2nd 44555 is ax6e2ndVD 44904 without virtual
deductions and was automatically derived from ax6e2ndVD 44904.
(Contributed by Alan Sare, 25-Mar-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ ∃𝑦𝑦 = 𝑣
| | 2:: | ⊢ 𝑢 ∈ V
| | 3:1,2: | ⊢ (𝑢 ∈ V ∧ ∃𝑦𝑦 = 𝑣)
| | 4:3: | ⊢ ∃𝑦(𝑢 ∈ V ∧ 𝑦 = 𝑣)
| | 5:: | ⊢ (𝑢 ∈ V ↔ ∃𝑥𝑥 = 𝑢)
| | 6:5: | ⊢ ((𝑢 ∈ V ∧ 𝑦 = 𝑣) ↔ (∃𝑥𝑥 =
𝑢 ∧ 𝑦 = 𝑣))
| | 7:6: | ⊢ (∃𝑦(𝑢 ∈ V ∧ 𝑦 = 𝑣) ↔ ∃𝑦
(∃𝑥𝑥 = 𝑢 ∧ 𝑦 = 𝑣))
| | 8:4,7: | ⊢ ∃𝑦(∃𝑥𝑥 = 𝑢 ∧ 𝑦 = 𝑣)
| | 9:: | ⊢ (𝑧 = 𝑣 → ∀𝑥𝑧 = 𝑣)
| | 10:: | ⊢ (𝑦 = 𝑣 → ∀𝑧𝑦 = 𝑣)
| | 11:: | ⊢ ( 𝑧 = 𝑦 ▶ 𝑧 = 𝑦 )
| | 12:11: | ⊢ ( 𝑧 = 𝑦 ▶ (𝑧 = 𝑣 ↔ 𝑦 = 𝑣) )
| | 120:11: | ⊢ (𝑧 = 𝑦 → (𝑧 = 𝑣 ↔ 𝑦 = 𝑣))
| | 13:9,10,120: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → (𝑦 = 𝑣 → ∀𝑥𝑦
= 𝑣))
| | 14:: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ¬ ∀𝑥𝑥 = 𝑦 )
| | 15:14,13: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ (𝑦 = 𝑣 → ∀𝑥
𝑦 = 𝑣) )
| | 16:15: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → (𝑦 = 𝑣 → ∀𝑥𝑦
= 𝑣))
| | 17:16: | ⊢ (∀𝑥¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑦 = 𝑣
→ ∀𝑥𝑦 = 𝑣))
| | 18:: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥¬ ∀𝑥𝑥 = 𝑦
)
| | 19:17,18: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑦 = 𝑣 → ∀
𝑥𝑦 = 𝑣))
| | 20:14,19: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ∀𝑥(𝑦 = 𝑣 →
∀𝑥𝑦 = 𝑣) )
| | 21:20: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ((∃𝑥𝑥 = 𝑢
∧ 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| | 22:21: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ((∃𝑥𝑥 = 𝑢 ∧
𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))
| | 23:22: | ⊢ (∀𝑦¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦((∃𝑥
𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))
| | 24:: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦¬ ∀𝑥𝑥 = 𝑦
)
| | 25:23,24: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦((∃𝑥𝑥 =
𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))
| | 26:14,25: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ∀𝑦((∃𝑥𝑥
= 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| | 27:26: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ (∃𝑦(∃𝑥𝑥
= 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| | 28:8,27: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ∃𝑦∃𝑥(𝑥 =
𝑢 ∧ 𝑦 = 𝑣) )
| | 29:28: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ∃𝑥∃𝑦(𝑥 =
𝑢 ∧ 𝑦 = 𝑣) )
| | qed:29: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∃𝑥∃𝑦(𝑥 = 𝑢
∧ 𝑦 = 𝑣))
|
|
| ⊢ (¬
∀𝑥 𝑥 = 𝑦 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
| |
| Theorem | ax6e2ndeqVD 44905* |
The following User's Proof is a Virtual Deduction proof (see wvd1 44566)
completed automatically by a Metamath tools program invoking mmj2 and
the Metamath Proof Assistant. ax6e2eq 44554 is ax6e2ndeqVD 44905 without virtual
deductions and was automatically derived from ax6e2ndeqVD 44905.
(Contributed by Alan Sare, 25-Mar-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ ( 𝑢 ≠ 𝑣 ▶ 𝑢 ≠ 𝑣 )
| | 2:: | ⊢ ( 𝑢 ≠ 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ▶ (
𝑥 = 𝑢 ∧ 𝑦 = 𝑣) )
| | 3:2: | ⊢ ( 𝑢 ≠ 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ▶ 𝑥
= 𝑢 )
| | 4:1,3: | ⊢ ( 𝑢 ≠ 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ▶ 𝑥
≠ 𝑣 )
| | 5:2: | ⊢ ( 𝑢 ≠ 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ▶ 𝑦
= 𝑣 )
| | 6:4,5: | ⊢ ( 𝑢 ≠ 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ▶ 𝑥
≠ 𝑦 )
| | 7:: | ⊢ (∀𝑥𝑥 = 𝑦 → 𝑥 = 𝑦)
| | 8:7: | ⊢ (¬ 𝑥 = 𝑦 → ¬ ∀𝑥𝑥 = 𝑦)
| | 9:: | ⊢ (¬ 𝑥 = 𝑦 ↔ 𝑥 ≠ 𝑦)
| | 10:8,9: | ⊢ (𝑥 ≠ 𝑦 → ¬ ∀𝑥𝑥 = 𝑦)
| | 11:6,10: | ⊢ ( 𝑢 ≠ 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ▶
¬ ∀𝑥𝑥 = 𝑦 )
| | 12:11: | ⊢ ( 𝑢 ≠ 𝑣 ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣)
→ ¬ ∀𝑥𝑥 = 𝑦) )
| | 13:12: | ⊢ ( 𝑢 ≠ 𝑣 ▶ ∀𝑥((𝑥 = 𝑢 ∧ 𝑦 =
𝑣) → ¬ ∀𝑥𝑥 = 𝑦) )
| | 14:13: | ⊢ ( 𝑢 ≠ 𝑣 ▶ (∃𝑥(𝑥 = 𝑢 ∧ 𝑦 =
𝑣) → ∃𝑥¬ ∀𝑥𝑥 = 𝑦) )
| | 15:: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥¬ ∀𝑥𝑥 = 𝑦
)
| | 19:15: | ⊢ (∃𝑥¬ ∀𝑥𝑥 = 𝑦 ↔ ¬ ∀𝑥𝑥 =
𝑦)
| | 20:14,19: | ⊢ ( 𝑢 ≠ 𝑣 ▶ (∃𝑥(𝑥 = 𝑢 ∧ 𝑦 =
𝑣) → ¬ ∀𝑥𝑥 = 𝑦) )
| | 21:20: | ⊢ ( 𝑢 ≠ 𝑣 ▶ ∀𝑦(∃𝑥(𝑥 = 𝑢 ∧
𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦) )
| | 22:21: | ⊢ ( 𝑢 ≠ 𝑣 ▶ (∃𝑦∃𝑥(𝑥 = 𝑢 ∧
𝑦 = 𝑣) → ∃𝑦¬ ∀𝑥𝑥 = 𝑦) )
| | 23:: | ⊢ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ↔ ∃
𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))
| | 24:22,23: | ⊢ ( 𝑢 ≠ 𝑣 ▶ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧
𝑦 = 𝑣) → ∃𝑦¬ ∀𝑥𝑥 = 𝑦) )
| | 25:: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦¬ ∀𝑥𝑥 = 𝑦
)
| | 26:25: | ⊢ (∃𝑦¬ ∀𝑥𝑥 = 𝑦 → ∃𝑦∀𝑦¬
∀𝑥𝑥 = 𝑦)
| | 260:: | ⊢ (∀𝑦¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦∀𝑦¬
∀𝑥𝑥 = 𝑦)
| | 27:260: | ⊢ (∃𝑦∀𝑦¬ ∀𝑥𝑥 = 𝑦 ↔ ∀𝑦¬
∀𝑥𝑥 = 𝑦)
| | 270:26,27: | ⊢ (∃𝑦¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦¬ ∀𝑥
𝑥 = 𝑦)
| | 28:: | ⊢ (∀𝑦¬ ∀𝑥𝑥 = 𝑦 → ¬ ∀𝑥𝑥 = 𝑦
)
| | 29:270,28: | ⊢ (∃𝑦¬ ∀𝑥𝑥 = 𝑦 → ¬ ∀𝑥𝑥 = 𝑦
)
| | 30:24,29: | ⊢ ( 𝑢 ≠ 𝑣 ▶ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧
𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦) )
| | 31:30: | ⊢ ( 𝑢 ≠ 𝑣 ▶ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧
𝑦 = 𝑣) → (¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣)) )
| | 32:31: | ⊢ (𝑢 ≠ 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦
= 𝑣) → (¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣)))
| | 33:: | ⊢ ( 𝑢 = 𝑣 ▶ 𝑢 = 𝑣 )
| | 34:33: | ⊢ ( 𝑢 = 𝑣 ▶ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦
= 𝑣) → 𝑢 = 𝑣) )
| | 35:34: | ⊢ ( 𝑢 = 𝑣 ▶ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦
= 𝑣) → (¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣)) )
| | 36:35: | ⊢ (𝑢 = 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 =
𝑣) → (¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣)))
| | 37:: | ⊢ (𝑢 = 𝑣 ∨ 𝑢 ≠ 𝑣)
| | 38:32,36,37: | ⊢ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (
¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣))
| | 39:: | ⊢ (∀𝑥𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃𝑦
(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))
| | 40:: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∃𝑥∃𝑦(𝑥 = 𝑢
∧ 𝑦 = 𝑣))
| | 41:40: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃
𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))
| | 42:: | ⊢ (∀𝑥𝑥 = 𝑦 ∨ ¬ ∀𝑥𝑥 = 𝑦)
| | 43:39,41,42: | ⊢ (𝑢 = 𝑣 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣
))
| | 44:40,43: | ⊢ ((¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣) → ∃𝑥
∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))
| | qed:38,44: | ⊢ ((¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣) ↔ ∃𝑥
∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))
|
|
| ⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) ↔ ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
| |
| Theorem | 2sb5ndVD 44906* |
The following User's Proof is a Virtual Deduction proof (see wvd1 44566)
completed automatically by a Metamath tools program invoking mmj2 and
the Metamath Proof Assistant. 2sb5nd 44557 is 2sb5ndVD 44906 without virtual
deductions and was automatically derived from 2sb5ndVD 44906.
(Contributed by Alan Sare, 30-Apr-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
| | 2:1: | ⊢ (∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 /
𝑥][𝑣 / 𝑦]𝜑) ↔ ∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
| | 3:: | ⊢ ([𝑣 / 𝑦]𝜑 → ∀𝑦[𝑣 / 𝑦]𝜑)
| | 4:3: | ⊢ [𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 → ∀𝑦[𝑣
/ 𝑦]𝜑)
| | 5:4: | ⊢ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → [𝑢 / 𝑥]
∀𝑦[𝑣 / 𝑦]𝜑)
| | 6:: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ¬ ∀𝑥𝑥 = 𝑦 )
| | 7:: | ⊢ (∀𝑦𝑦 = 𝑥 → ∀𝑥𝑥 = 𝑦)
| | 8:7: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ¬ ∀𝑦𝑦 = 𝑥)
| | 9:6,8: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ¬ ∀𝑦𝑦 = 𝑥 )
| | 10:9: | ⊢ ([𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑 ↔ ∀
𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
| | 11:5,10: | ⊢ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢
/ 𝑥][𝑣 / 𝑦]𝜑)
| | 12:11: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ([𝑢 / 𝑥][𝑣 /
𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| | 13:: | ⊢ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑥[𝑢
/ 𝑥][𝑣 / 𝑦]𝜑)
| | 14:: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∀𝑥𝑥 = 𝑦 )
| | 15:14: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ (∀𝑥[𝑢 / 𝑥][
𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑) )
| | 16:13,15: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ([𝑢 / 𝑥][𝑣 / 𝑦
]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑) )
| | 17:16: | ⊢ (∀𝑥𝑥 = 𝑦 → ([𝑢 / 𝑥][𝑣 / 𝑦]
𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| | 19:12,17: | ⊢ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢
/ 𝑥][𝑣 / 𝑦]𝜑)
| | 20:19: | ⊢ (∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 /
𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| | 21:2,20: | ⊢ (∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)
↔ (∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| | 22:21: | ⊢ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
𝜑) ↔ ∃𝑥(∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| | 23:13: | ⊢ (∃𝑥(∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [
𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| | 24:22,23: | ⊢ ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [
𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
| | 240:24: | ⊢ ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (
∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) ↔
(∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
𝜑)))
| | 241:: | ⊢ ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (
∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) ↔
(∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| | 242:241,240: | ⊢ ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [
𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)))
| | 243:: | ⊢ ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (
[𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
𝜑))) ↔ ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
[𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))))
| | 25:242,243: | ⊢ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ([
𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)))
| | 26:: | ⊢ ((¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣) ↔ ∃𝑥
∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))
| | qed:25,26: | ⊢ ((¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣) → ([𝑢
/ 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)))
|
|
| ⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))) |
| |
| Theorem | 2uasbanhVD 44907* |
The following User's Proof is a Virtual Deduction proof (see wvd1 44566)
completed automatically by a Metamath tools program invoking mmj2 and
the Metamath Proof Assistant. 2uasbanh 44558 is 2uasbanhVD 44907 without
virtual deductions and was automatically derived from 2uasbanhVD 44907.
(Contributed by Alan Sare, 31-May-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
| h1:: | ⊢ (𝜒 ↔ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 =
𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)))
| | 100:1: | ⊢ (𝜒 → (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 =
𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)))
| | 2:100: | ⊢ ( 𝜒 ▶ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦
= 𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)) )
| | 3:2: | ⊢ ( 𝜒 ▶ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 =
𝑣) ∧ 𝜑) )
| | 4:3: | ⊢ ( 𝜒 ▶ ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣
) )
| | 5:4: | ⊢ ( 𝜒 ▶ (¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣)
)
| | 6:5: | ⊢ ( 𝜒 ▶ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑
↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) )
| | 7:3,6: | ⊢ ( 𝜒 ▶ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑 )
| | 8:2: | ⊢ ( 𝜒 ▶ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 =
𝑣) ∧ 𝜓) )
| | 9:5: | ⊢ ( 𝜒 ▶ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜓
↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)) )
| | 10:8,9: | ⊢ ( 𝜒 ▶ [𝑢 / 𝑥][𝑣 / 𝑦]𝜓 )
| | 101:: | ⊢ ([𝑣 / 𝑦](𝜑 ∧ 𝜓) ↔ ([𝑣 /
𝑦]𝜑 ∧ [𝑣 / 𝑦]𝜓))
| | 102:101: | ⊢ ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑 ∧ 𝜓)
↔ [𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 ∧ [𝑣 / 𝑦]𝜓))
| | 103:: | ⊢ ([𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 ∧ [𝑣 / 𝑦
]𝜓) ↔ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜓))
| | 104:102,103: | ⊢ ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑 ∧ 𝜓)
↔ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜓))
| | 11:7,10,104: | ⊢ ( 𝜒 ▶ [𝑢 / 𝑥][𝑣 / 𝑦](𝜑 ∧
𝜓) )
| | 110:5: | ⊢ ( 𝜒 ▶ ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑
∧ 𝜓) ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓))) )
| | 12:11,110: | ⊢ ( 𝜒 ▶ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 =
𝑣) ∧ (𝜑 ∧ 𝜓)) )
| | 120:12: | ⊢ (𝜒 → ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣
) ∧ (𝜑 ∧ 𝜓)))
| | 13:1,120: | ⊢ ((∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)) →
∃𝑥∃𝑦((𝑥 = 𝑢
∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)))
| | 14:: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)) )
| | 15:14: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) ▶ (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) )
| | 16:14: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) ▶ (𝜑 ∧ 𝜓) )
| | 17:16: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) ▶ 𝜑 )
| | 18:15,17: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) )
| | 19:18: | ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
| | 20:19: | ⊢ (∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑
∧ 𝜓)) → ∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
| | 21:20: | ⊢ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (
𝜑 ∧ 𝜓)) → ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
| | 22:16: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) ▶ 𝜓 )
| | 23:15,22: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓) )
| | 24:23: | ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓))
| | 25:24: | ⊢ (∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑
∧ 𝜓)) → ∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓))
| | 26:25: | ⊢ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (
𝜑 ∧ 𝜓)) → ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓))
| | 27:21,26: | ⊢ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (
𝜑 ∧ 𝜓)) → (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ∧
∃𝑥∃𝑦(
(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)))
| | qed:13,27: | ⊢ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (
𝜑 ∧ 𝜓)) ↔ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ∧
∃𝑥∃𝑦(
(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)))
|
|
| ⊢ (𝜒 ↔ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓))) ⇒ ⊢ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)) ↔ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓))) |
| |
| Theorem | e2ebindVD 44908 |
The following User's Proof is a Virtual Deduction proof (see wvd1 44566)
completed automatically by a Metamath tools program invoking mmj2 and the
Metamath Proof Assistant. e2ebind 44560 is e2ebindVD 44908 without virtual
deductions and was automatically derived from e2ebindVD 44908.
| 1:: | ⊢ (𝜑 ↔ 𝜑)
| | 2:1: | ⊢ (∀𝑦𝑦 = 𝑥 → (𝜑 ↔ 𝜑))
| | 3:2: | ⊢ (∀𝑦𝑦 = 𝑥 → (∃𝑦𝜑 ↔ ∃𝑥𝜑
))
| | 4:: | ⊢ ( ∀𝑦𝑦 = 𝑥 ▶ ∀𝑦𝑦 = 𝑥 )
| | 5:3,4: | ⊢ ( ∀𝑦𝑦 = 𝑥 ▶ (∃𝑦𝜑 ↔ ∃𝑥
𝜑) )
| | 6:: | ⊢ (∀𝑦𝑦 = 𝑥 → ∀𝑦∀𝑦𝑦 = 𝑥)
| | 7:5,6: | ⊢ ( ∀𝑦𝑦 = 𝑥 ▶ ∀𝑦(∃𝑦𝜑 ↔
∃𝑥𝜑) )
| | 8:7: | ⊢ ( ∀𝑦𝑦 = 𝑥 ▶ (∃𝑦∃𝑦𝜑 ↔
∃𝑦∃𝑥𝜑) )
| | 9:: | ⊢ (∃𝑦∃𝑥𝜑 ↔ ∃𝑥∃𝑦𝜑)
| | 10:8,9: | ⊢ ( ∀𝑦𝑦 = 𝑥 ▶ (∃𝑦∃𝑦𝜑 ↔
∃𝑥∃𝑦𝜑) )
| | 11:: | ⊢ (∃𝑦𝜑 → ∀𝑦∃𝑦𝜑)
| | 12:11: | ⊢ (∃𝑦∃𝑦𝜑 ↔ ∃𝑦𝜑)
| | 13:10,12: | ⊢ ( ∀𝑦𝑦 = 𝑥 ▶ (∃𝑥∃𝑦𝜑 ↔
∃𝑦𝜑) )
| | 14:13: | ⊢ (∀𝑦𝑦 = 𝑥 → (∃𝑥∃𝑦𝜑 ↔ ∃
𝑦𝜑))
| | 15:: | ⊢ (∀𝑦𝑦 = 𝑥 ↔ ∀𝑥𝑥 = 𝑦)
| | qed:14,15: | ⊢ (∀𝑥𝑥 = 𝑦 → (∃𝑥∃𝑦𝜑 ↔ ∃
𝑦𝜑))
|
(Contributed by Alan Sare, 27-Nov-2014.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥∃𝑦𝜑 ↔ ∃𝑦𝜑)) |
| |
| 21.41.8 Virtual Deduction transcriptions of
textbook proofs
|
| |
| Theorem | sb5ALTVD 44909* |
The following User's Proof is a Natural Deduction Sequent Calculus
transcription of the Fitch-style Natural Deduction proof of Unit 20
Excercise 3.a., which is sb5 2276, found in the "Answers to Starred
Exercises" on page 457 of "Understanding Symbolic Logic", Fifth
Edition (2008), by Virginia Klenk. The same proof may also be
interpreted as a Virtual Deduction Hilbert-style axiomatic proof. It
was completed automatically by the tools program completeusersproof.cmd,
which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof
Assistant. sb5ALT 44522 is sb5ALTVD 44909 without virtual deductions and
was automatically derived from sb5ALTVD 44909.
| 1:: | ⊢ ( [𝑦 / 𝑥]𝜑 ▶ [𝑦 / 𝑥]𝜑 )
| | 2:: | ⊢ [𝑦 / 𝑥]𝑥 = 𝑦
| | 3:1,2: | ⊢ ( [𝑦 / 𝑥]𝜑 ▶ [𝑦 / 𝑥](𝑥 = 𝑦
∧ 𝜑) )
| | 4:3: | ⊢ ( [𝑦 / 𝑥]𝜑 ▶ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑
) )
| | 5:4: | ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)
)
| | 6:: | ⊢ ( ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ▶ ∃𝑥(𝑥 =
𝑦 ∧ 𝜑) )
| | 7:: | ⊢ ( ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) , (𝑥 = 𝑦 ∧ 𝜑
) ▶ (𝑥 = 𝑦 ∧ 𝜑) )
| | 8:7: | ⊢ ( ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) , (𝑥 = 𝑦 ∧ 𝜑
) ▶ 𝜑 )
| | 9:7: | ⊢ ( ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) , (𝑥 = 𝑦 ∧ 𝜑
) ▶ 𝑥 = 𝑦 )
| | 10:8,9: | ⊢ ( ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) , (𝑥 = 𝑦 ∧ 𝜑
) ▶ [𝑦 / 𝑥]𝜑 )
| | 101:: | ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
| | 11:101,10: | ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → [𝑦 / 𝑥]𝜑
)
| | 12:5,11: | ⊢ (([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑
)) ∧ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → [𝑦 / 𝑥]𝜑))
| | qed:12: | ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)
)
|
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
| |
| Theorem | vk15.4jVD 44910 |
The following User's Proof is a Natural Deduction Sequent Calculus
transcription of the Fitch-style Natural Deduction proof of Unit 15
Excercise 4.f. found in the "Answers to Starred Exercises" on page 442
of "Understanding Symbolic Logic", Fifth Edition (2008), by Virginia
Klenk. The same proof may also be interpreted to be a Virtual Deduction
Hilbert-style axiomatic proof. It was completed automatically by the
tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2
and Norm Megill's Metamath Proof Assistant. vk15.4j 44525 is vk15.4jVD 44910
without virtual deductions and was automatically derived
from vk15.4jVD 44910. Step numbers greater than 25 are additional steps
necessary for the sequent calculus proof not contained in the
Fitch-style proof. Otherwise, step i of the User's Proof corresponds to
step i of the Fitch-style proof.
| h1:: | ⊢ ¬ (∃𝑥¬ 𝜑 ∧ ∃𝑥(𝜓 ∧
¬ 𝜒))
| | h2:: | ⊢ (∀𝑥𝜒 → ¬ ∃𝑥(𝜃 ∧ 𝜏
))
| | h3:: | ⊢ ¬ ∀𝑥(𝜏 → 𝜑)
| | 4:: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ¬ ∃𝑥¬
𝜃 )
| | 5:4: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ∀𝑥𝜃 )
| | 6:3: | ⊢ ∃𝑥(𝜏 ∧ ¬ 𝜑)
| | 7:: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , (𝜏 ∧ ¬
𝜑) ▶ (𝜏 ∧ ¬ 𝜑) )
| | 8:7: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , (𝜏 ∧ ¬
𝜑) ▶ 𝜏 )
| | 9:7: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , (𝜏 ∧ ¬
𝜑) ▶ ¬ 𝜑 )
| | 10:5: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ 𝜃 )
| | 11:10,8: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , (𝜏 ∧ ¬
𝜑) ▶ (𝜃 ∧ 𝜏) )
| | 12:11: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , (𝜏 ∧ ¬
𝜑) ▶ ∃𝑥(𝜃 ∧ 𝜏) )
| | 13:12: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , (𝜏 ∧ ¬
𝜑) ▶ ¬ ¬ ∃𝑥(𝜃 ∧ 𝜏) )
| | 14:2,13: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , (𝜏 ∧ ¬
𝜑) ▶ ¬ ∀𝑥𝜒 )
| | 140:: | ⊢ (∃𝑥¬ 𝜃 → ∀𝑥∃𝑥¬ 𝜃
)
| | 141:140: | ⊢ (¬ ∃𝑥¬ 𝜃 → ∀𝑥¬ ∃𝑥
¬ 𝜃)
| | 142:: | ⊢ (∀𝑥𝜒 → ∀𝑥∀𝑥𝜒)
| | 143:142: | ⊢ (¬ ∀𝑥𝜒 → ∀𝑥¬ ∀𝑥𝜒
)
| | 144:6,14,141,143: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ¬ ∀𝑥𝜒
)
| | 15:1: | ⊢ (¬ ∃𝑥¬ 𝜑 ∨ ¬ ∃𝑥(𝜓
∧ ¬ 𝜒))
| | 16:9: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , (𝜏 ∧ ¬
𝜑) ▶ ∃𝑥¬ 𝜑 )
| | 161:: | ⊢ (∃𝑥¬ 𝜑 → ∀𝑥∃𝑥¬ 𝜑
)
| | 162:6,16,141,161: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ∃𝑥¬ 𝜑
)
| | 17:162: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ¬ ¬ ∃𝑥
¬ 𝜑 )
| | 18:15,17: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ¬ ∃𝑥(
𝜓 ∧ ¬ 𝜒) )
| | 19:18: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ∀𝑥(𝜓
→ 𝜒) )
| | 20:144: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ∃𝑥¬ 𝜒
)
| | 21:: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , ¬ 𝜒 ▶ ¬
𝜒 )
| | 22:19: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ (𝜓 → 𝜒
) )
| | 23:21,22: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , ¬ 𝜒 ▶ ¬
𝜓 )
| | 24:23: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , ¬ 𝜒 ▶ ∃
𝑥¬ 𝜓 )
| | 240:: | ⊢ (∃𝑥¬ 𝜓 → ∀𝑥∃𝑥¬ 𝜓
)
| | 241:20,24,141,240: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ∃𝑥¬ 𝜓
)
| | 25:241: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ¬ ∀𝑥𝜓
)
| | qed:25: | ⊢ (¬ ∃𝑥¬ 𝜃 → ¬ ∀𝑥𝜓)
|
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ ¬
(∃𝑥 ¬ 𝜑 ∧ ∃𝑥(𝜓 ∧ ¬ 𝜒)) & ⊢ (∀𝑥𝜒 → ¬ ∃𝑥(𝜃 ∧ 𝜏)) & ⊢ ¬
∀𝑥(𝜏 → 𝜑) ⇒ ⊢ (¬ ∃𝑥 ¬ 𝜃 → ¬ ∀𝑥𝜓) |
| |
| Theorem | notnotrALTVD 44911 |
The following User's Proof is a Natural Deduction Sequent Calculus
transcription of the Fitch-style Natural Deduction proof of Theorem 5 of
Section 14 of [Margaris] p. 59 (which is notnotr 130). The same proof
may also be interpreted as a Virtual Deduction Hilbert-style
axiomatic proof. It was completed automatically by the tools program
completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm
Megill's Metamath Proof Assistant. notnotrALT 44526 is notnotrALTVD 44911
without virtual deductions and was automatically derived
from notnotrALTVD 44911. Step i of the User's Proof corresponds to
step i of the Fitch-style proof.
| 1:: | ⊢ ( ¬ ¬ 𝜑 ▶ ¬ ¬ 𝜑 )
| | 2:: | ⊢ (¬ ¬ 𝜑 → (¬ 𝜑 → ¬ ¬ ¬ 𝜑))
| | 3:1: | ⊢ ( ¬ ¬ 𝜑 ▶ (¬ 𝜑 → ¬ ¬ ¬ 𝜑) )
| | 4:: | ⊢ ((¬ 𝜑 → ¬ ¬ ¬ 𝜑) → (¬ ¬ 𝜑 →
𝜑))
| | 5:3: | ⊢ ( ¬ ¬ 𝜑 ▶ (¬ ¬ 𝜑 → 𝜑) )
| | 6:5,1: | ⊢ ( ¬ ¬ 𝜑 ▶ 𝜑 )
| | qed:6: | ⊢ (¬ ¬ 𝜑 → 𝜑)
|
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (¬ ¬
𝜑 → 𝜑) |
| |
| Theorem | con3ALTVD 44912 |
The following User's Proof is a Natural Deduction Sequent Calculus
transcription of the Fitch-style Natural Deduction proof of Theorem 7 of
Section 14 of [Margaris] p. 60 (which is con3 153). The same proof may
also be interpreted to be a Virtual Deduction Hilbert-style axiomatic
proof. It was completed automatically by the tools program
completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm
Megill's Metamath Proof Assistant. con3ALT2 44527 is con3ALTVD 44912 without
virtual deductions and was automatically derived from con3ALTVD 44912.
Step i of the User's Proof corresponds to step i of the Fitch-style proof.
| 1:: | ⊢ ( (𝜑 → 𝜓) ▶ (𝜑 → 𝜓) )
| | 2:: | ⊢ ( (𝜑 → 𝜓) , ¬ ¬ 𝜑 ▶ ¬ ¬ 𝜑 )
| | 3:: | ⊢ (¬ ¬ 𝜑 → 𝜑)
| | 4:2: | ⊢ ( (𝜑 → 𝜓) , ¬ ¬ 𝜑 ▶ 𝜑 )
| | 5:1,4: | ⊢ ( (𝜑 → 𝜓) , ¬ ¬ 𝜑 ▶ 𝜓 )
| | 6:: | ⊢ (𝜓 → ¬ ¬ 𝜓)
| | 7:6,5: | ⊢ ( (𝜑 → 𝜓) , ¬ ¬ 𝜑 ▶ ¬ ¬ 𝜓 )
| | 8:7: | ⊢ ( (𝜑 → 𝜓) ▶ (¬ ¬ 𝜑 → ¬ ¬ 𝜓
) )
| | 9:: | ⊢ ((¬ ¬ 𝜑 → ¬ ¬ 𝜓) → (¬ 𝜓 →
¬ 𝜑))
| | 10:8: | ⊢ ( (𝜑 → 𝜓) ▶ (¬ 𝜓 → ¬ 𝜑) )
| | qed:10: | ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑))
|
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) |
| |
| 21.41.9 Theorems proved using conjunction-form
Virtual Deduction
|
| |
| Theorem | elpwgdedVD 44913 |
Membership in a power class. Theorem 86 of [Suppes] p. 47. Derived
from elpwg 4569. In form of VD deduction with 𝜑 and 𝜓 as
variable virtual hypothesis collections based on Mario Carneiro's
metavariable concept. elpwgded 44561 is elpwgdedVD 44913 using conventional
notation. (Contributed by Alan Sare, 23-Apr-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ ( 𝜑 ▶ 𝐴 ∈ V ) & ⊢ ( 𝜓 ▶ 𝐴 ⊆ 𝐵 )
⇒ ⊢ ( ( 𝜑 , 𝜓 ) ▶ 𝐴 ∈ 𝒫 𝐵 ) |
| |
| Theorem | sspwimp 44914 |
If a class is a subclass of another class, then its power class is a
subclass of that other class's power class. Left-to-right implication
of Exercise 18 of [TakeutiZaring]
p. 18. For the biconditional, see
sspwb 5412. The proof sspwimp 44914, using conventional notation, was
translated from virtual deduction form, sspwimpVD 44915, using a
translation program. (Contributed by Alan Sare, 23-Apr-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| |
| Theorem | sspwimpVD 44915 |
The following User's Proof is a Virtual Deduction proof (see wvd1 44566)
using conjunction-form virtual hypothesis collections. It was completed
manually, but has the potential to be completed automatically by a tools
program which would invoke Mel L. O'Cat's mmj2 and Norm Megill's
Metamath Proof Assistant.
sspwimp 44914 is sspwimpVD 44915 without virtual deductions and was derived
from sspwimpVD 44915. (Contributed by Alan Sare, 23-Apr-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ ( 𝐴 ⊆ 𝐵 ▶ 𝐴 ⊆ 𝐵 )
| | 2:: | ⊢ ( .............. 𝑥 ∈ 𝒫 𝐴
▶ 𝑥 ∈ 𝒫 𝐴 )
| | 3:2: | ⊢ ( .............. 𝑥 ∈ 𝒫 𝐴
▶ 𝑥 ⊆ 𝐴 )
| | 4:3,1: | ⊢ ( ( 𝐴 ⊆ 𝐵 , 𝑥 ∈ 𝒫 𝐴 ) ▶ 𝑥 ⊆ 𝐵 )
| | 5:: | ⊢ 𝑥 ∈ V
| | 6:4,5: | ⊢ ( ( 𝐴 ⊆ 𝐵 , 𝑥 ∈ 𝒫 𝐴 ) ▶ 𝑥 ∈ 𝒫 𝐵
)
| | 7:6: | ⊢ ( 𝐴 ⊆ 𝐵 ▶ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵)
)
| | 8:7: | ⊢ ( 𝐴 ⊆ 𝐵 ▶ ∀𝑥(𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈
𝒫 𝐵) )
| | 9:8: | ⊢ ( 𝐴 ⊆ 𝐵 ▶ 𝒫 𝐴 ⊆ 𝒫 𝐵 )
| | qed:9: | ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
|
|
| ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| |
| Theorem | sspwimpcf 44916 |
If a class is a subclass of another class, then its power class is a
subclass of that other class's power class. Left-to-right implication
of Exercise 18 of [TakeutiZaring]
p. 18. sspwimpcf 44916, using
conventional notation, was translated from its virtual deduction form,
sspwimpcfVD 44917, using a translation program. (Contributed
by Alan Sare,
13-Jun-2015.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| |
| Theorem | sspwimpcfVD 44917 |
The following User's Proof is a Virtual Deduction proof (see wvd1 44566)
using conjunction-form virtual hypothesis collections. It was completed
automatically by a tools program which would invokes Mel L. O'Cat's mmj2
and Norm Megill's Metamath Proof Assistant.
sspwimpcf 44916 is sspwimpcfVD 44917 without virtual deductions and was derived
from sspwimpcfVD 44917.
The version of completeusersproof.cmd used is capable of only generating
conjunction-form unification theorems, not unification deductions.
(Contributed by Alan Sare, 13-Jun-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ ( 𝐴 ⊆ 𝐵 ▶ 𝐴 ⊆ 𝐵 )
| | 2:: | ⊢ ( ........... 𝑥 ∈ 𝒫 𝐴
▶ 𝑥 ∈ 𝒫 𝐴 )
| | 3:2: | ⊢ ( ........... 𝑥 ∈ 𝒫 𝐴
▶ 𝑥 ⊆ 𝐴 )
| | 4:3,1: | ⊢ ( ( 𝐴 ⊆ 𝐵 , 𝑥 ∈ 𝒫 𝐴 ) ▶ 𝑥 ⊆ 𝐵 )
| | 5:: | ⊢ 𝑥 ∈ V
| | 6:4,5: | ⊢ ( ( 𝐴 ⊆ 𝐵 , 𝑥 ∈ 𝒫 𝐴 ) ▶ 𝑥 ∈ 𝒫 𝐵
)
| | 7:6: | ⊢ ( 𝐴 ⊆ 𝐵 ▶ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵)
)
| | 8:7: | ⊢ ( 𝐴 ⊆ 𝐵 ▶ ∀𝑥(𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈
𝒫 𝐵) )
| | 9:8: | ⊢ ( 𝐴 ⊆ 𝐵 ▶ 𝒫 𝐴 ⊆ 𝒫 𝐵 )
| | qed:9: | ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
|
|
| ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| |
| Theorem | suctrALTcf 44918 |
The successor of a transitive class is transitive. suctrALTcf 44918, using
conventional notation, was translated from virtual deduction form,
suctrALTcfVD 44919, using a translation program. (Contributed
by Alan
Sare, 13-Jun-2015.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ (Tr 𝐴 → Tr suc 𝐴) |
| |
| Theorem | suctrALTcfVD 44919 |
The following User's Proof is a Virtual Deduction proof (see wvd1 44566)
using conjunction-form virtual hypothesis collections. The
conjunction-form version of completeusersproof.cmd. It allows the User
to avoid superflous virtual hypotheses. This proof was completed
automatically by a tools program which invokes Mel L. O'Cat's
mmj2 and Norm Megill's Metamath Proof Assistant. suctrALTcf 44918
is suctrALTcfVD 44919 without virtual deductions and was derived
automatically from suctrALTcfVD 44919. The version of
completeusersproof.cmd used is capable of only generating
conjunction-form unification theorems, not unification deductions.
(Contributed by Alan Sare, 13-Jun-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ ( Tr 𝐴 ▶ Tr 𝐴 )
| | 2:: | ⊢ ( ......... (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
suc 𝐴) ▶ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) )
| | 3:2: | ⊢ ( ......... (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
suc 𝐴) ▶ 𝑧 ∈ 𝑦 )
| | 4:: | ⊢ ( ...................................
....... 𝑦 ∈ 𝐴 ▶ 𝑦 ∈ 𝐴 )
| | 5:1,3,4: | ⊢ ( ( Tr 𝐴 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴)
, 𝑦 ∈ 𝐴 ) ▶ 𝑧 ∈ 𝐴 )
| | 6:: | ⊢ 𝐴 ⊆ suc 𝐴
| | 7:5,6: | ⊢ ( ( Tr 𝐴 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴)
, 𝑦 ∈ 𝐴 ) ▶ 𝑧 ∈ suc 𝐴 )
| | 8:7: | ⊢ ( ( Tr 𝐴 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴)
) ▶ (𝑦 ∈ 𝐴 → 𝑧 ∈ suc 𝐴) )
| | 9:: | ⊢ ( ...................................
...... 𝑦 = 𝐴 ▶ 𝑦 = 𝐴 )
| | 10:3,9: | ⊢ ( ........ ( (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
suc 𝐴), 𝑦 = 𝐴 ) ▶ 𝑧 ∈ 𝐴 )
| | 11:10,6: | ⊢ ( ........ ( (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
suc 𝐴), 𝑦 = 𝐴 ) ▶ 𝑧 ∈ suc 𝐴 )
| | 12:11: | ⊢ ( .......... (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
suc 𝐴) ▶ (𝑦 = 𝐴 → 𝑧 ∈ suc 𝐴) )
| | 13:2: | ⊢ ( .......... (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
suc 𝐴) ▶ 𝑦 ∈ suc 𝐴 )
| | 14:13: | ⊢ ( .......... (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
suc 𝐴) ▶ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴) )
| | 15:8,12,14: | ⊢ ( ( Tr 𝐴 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴)
) ▶ 𝑧 ∈ suc 𝐴 )
| | 16:15: | ⊢ ( Tr 𝐴 ▶ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈
suc 𝐴) → 𝑧 ∈ suc 𝐴) )
| | 17:16: | ⊢ ( Tr 𝐴 ▶ ∀𝑧∀𝑦((𝑧 ∈
𝑦 ∧ 𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴) )
| | 18:17: | ⊢ ( Tr 𝐴 ▶ Tr suc 𝐴 )
| | qed:18: | ⊢ (Tr 𝐴 → Tr suc 𝐴)
|
|
| ⊢ (Tr 𝐴 → Tr suc 𝐴) |
| |
| 21.41.10 Theorems with a VD proof in
conventional notation derived from a VD proof
|
| |
| Theorem | suctrALT3 44920 |
The successor of a transitive class is transitive. suctrALT3 44920 is the
completed proof in conventional notation of the Virtual Deduction proof
https://us.metamath.org/other/completeusersproof/suctralt3vd.html 44920.
It was completed manually. The potential for automated derivation from
the VD proof exists. See wvd1 44566 for a description of Virtual
Deduction.
Some sub-theorems of the proof were completed using a unification
deduction (e.g., the sub-theorem whose assertion is step 19 used
jaoded 44563). Unification deductions employ Mario
Carneiro's metavariable
concept. Some sub-theorems were completed using a unification theorem
(e.g., the sub-theorem whose assertion is step 24 used dftr2 5219) .
(Contributed by Alan Sare, 3-Dec-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (Tr 𝐴 → Tr suc 𝐴) |
| |
| Theorem | sspwimpALT 44921 |
If a class is a subclass of another class, then its power class is a
subclass of that other class's power class. Left-to-right implication
of Exercise 18 of [TakeutiZaring]
p. 18. sspwimpALT 44921 is the completed
proof in conventional notation of the Virtual Deduction proof
https://us.metamath.org/other/completeusersproof/sspwimpaltvd.html 44921.
It was completed manually. The potential for automated derivation from
the VD proof exists. See wvd1 44566 for a description of Virtual
Deduction.
Some sub-theorems of the proof were completed using a unification
deduction (e.g., the sub-theorem whose assertion is step 9 used
elpwgded 44561). Unification deductions employ Mario
Carneiro's
metavariable concept. Some sub-theorems were completed using a
unification theorem (e.g., the sub-theorem whose assertion is step 5
used elpwi 4573). (Contributed by Alan Sare, 3-Dec-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| |
| Theorem | unisnALT 44922 |
A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53.
The User manually input on a mmj2 Proof Worksheet, without labels, all
steps of unisnALT 44922 except 1, 11, 15, 21, and 30. With
execution of the
mmj2 unification command, mmj2 could find labels for all steps except
for 2, 12, 16, 22, and 31 (and the then non-existing steps 1, 11, 15,
21, and 30). mmj2 could not find reference theorems for those five steps
because the hypothesis field of each of these steps was empty and none
of those steps unifies with a theorem in set.mm. Each of these five
steps is a semantic variation of a theorem in set.mm and is 2-step
provable. mmj2 does not have the ability to automatically generate the
semantic variation in set.mm of a theorem in a mmj2 Proof Worksheet
unless the theorem in the Proof Worksheet is labeled with a 1-hypothesis
deduction whose hypothesis is a theorem in set.mm which unifies with the
theorem in the Proof Worksheet. The stepprover.c program, which invokes
mmj2, has this capability. stepprover.c automatically generated steps 1,
11, 15, 21, and 30, labeled all steps, and generated the RPN proof of
unisnALT 44922. Roughly speaking, stepprover.c added to
the Proof
Worksheet a labeled duplicate step of each non-unifying theorem for each
label in a text file, labels.txt, containing a list of labels provided
by the User. Upon mmj2 unification, stepprover.c identified a label for
each of the five theorems which 2-step proves it. For unisnALT 44922, the
label list is a list of all 1-hypothesis propositional calculus
deductions in set.mm. stepproverp.c is the same as stepprover.c except
that it intermittently pauses during execution, allowing the User to
observe the changes to a text file caused by the execution of particular
statements of the program. (Contributed by Alan Sare, 19-Aug-2016.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ 𝐴 ∈
V ⇒ ⊢ ∪
{𝐴} = 𝐴 |
| |
| 21.41.11 Theorems with a proof in conventional
notation derived from a VD proof
Theorems with a proof in conventional notation automatically derived by
completeusersproof.c from a Virtual Deduction User's Proof.
|
| |
| Theorem | notnotrALT2 44923 |
Converse of double negation. Theorem *2.14 of [WhiteheadRussell] p. 102.
Proof derived by completeusersproof.c from User's Proof in
VirtualDeductionProofs.txt. (Contributed by Alan Sare, 11-Sep-2016.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (¬ ¬
𝜑 → 𝜑) |
| |
| Theorem | sspwimpALT2 44924 |
If a class is a subclass of another class, then its power class is a
subclass of that other class's power class. Left-to-right implication
of Exercise 18 of [TakeutiZaring]
p. 18. Proof derived by
completeusersproof.c from User's Proof in VirtualDeductionProofs.txt.
The User's Proof in html format is displayed in
https://us.metamath.org/other/completeusersproof/sspwimpaltvd.html.
(Contributed by Alan Sare, 11-Sep-2016.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| |
| Theorem | e2ebindALT 44925 |
Absorption of an existential quantifier of a double existential quantifier
of non-distinct variables. The proof is derived by completeusersproof.c
from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html
format is displayed in e2ebindVD 44908. (Contributed by Alan Sare,
11-Sep-2016.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥∃𝑦𝜑 ↔ ∃𝑦𝜑)) |
| |
| Theorem | ax6e2ndALT 44926* |
If at least two sets exist (dtru 5399), then the same is true expressed
in an alternate form similar to the form of ax6e 2382.
The proof is
derived by completeusersproof.c from User's Proof in
VirtualDeductionProofs.txt. The User's Proof in html format is
displayed in ax6e2ndVD 44904. (Contributed by Alan Sare, 11-Sep-2016.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (¬
∀𝑥 𝑥 = 𝑦 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
| |
| Theorem | ax6e2ndeqALT 44927* |
"At least two sets exist" expressed in the form of dtru 5399
is logically
equivalent to the same expressed in a form similar to ax6e 2382
if dtru 5399
is false implies 𝑢 = 𝑣. Proof derived by
completeusersproof.c from
User's Proof in VirtualDeductionProofs.txt. The User's Proof in html
format is displayed in ax6e2ndeqVD 44905. (Contributed by Alan Sare,
11-Sep-2016.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) ↔ ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
| |
| Theorem | 2sb5ndALT 44928* |
Equivalence for double substitution 2sb5 2278 without distinct 𝑥,
𝑦 requirement. 2sb5nd 44557 is derived from 2sb5ndVD 44906. The proof is
derived by completeusersproof.c from User's Proof in
VirtualDeductionProofs.txt. The User's Proof in html format is
displayed in 2sb5ndVD 44906. (Contributed by Alan Sare, 19-Sep-2016.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))) |
| |
| Theorem | chordthmALT 44929* |
The intersecting chords theorem. If points A, B, C, and D lie on a
circle (with center Q, say), and the point P is on the interior of the
segments AB and CD, then the two products of lengths PA · PB and
PC · PD are equal. The Euclidean plane is identified with the
complex plane, and the fact that P is on AB and on CD is expressed by
the hypothesis that the angles APB and CPD are equal to π. The
result is proven by using chordthmlem5 26753 twice to show that PA
· PB and PC · PD both equal BQ
2
−
PQ
2
. This is similar to the proof of the
theorem given in Euclid's Elements, where it is Proposition
III.35.
Proven by David Moews on 28-Feb-2017 as chordthm 26754.
https://us.metamath.org/other/completeusersproof/chordthmaltvd.html 26754 is
a Virtual
Deduction User's Proof transcription of chordthm 26754. That VD User's
Proof was input into completeusersproof, automatically generating this
chordthmALT 44929 Metamath proof. (Contributed by Alan Sare,
19-Sep-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0})
↦ (ℑ‘(log‘(𝑦 / 𝑥)))) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑃 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝑃)
& ⊢ (𝜑 → 𝐵 ≠ 𝑃)
& ⊢ (𝜑 → 𝐶 ≠ 𝑃)
& ⊢ (𝜑 → 𝐷 ≠ 𝑃)
& ⊢ (𝜑 → ((𝐴 − 𝑃)𝐹(𝐵 − 𝑃)) = π) & ⊢ (𝜑 → ((𝐶 − 𝑃)𝐹(𝐷 − 𝑃)) = π) & ⊢ (𝜑 → 𝑄 ∈ ℂ) & ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) & ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐶 − 𝑄))) & ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐷 − 𝑄))) ⇒ ⊢ (𝜑 → ((abs‘(𝑃 − 𝐴)) · (abs‘(𝑃 − 𝐵))) = ((abs‘(𝑃 − 𝐶)) · (abs‘(𝑃 − 𝐷)))) |
| |
| Theorem | isosctrlem1ALT 44930 |
Lemma for isosctr 26738. This proof was automatically derived by
completeusersproof from its Virtual Deduction proof counterpart
https://us.metamath.org/other/completeusersproof/isosctrlem1altvd.html 26738.
As it is verified by the Metamath program, isosctrlem1ALT 44930 verifies
https://us.metamath.org/other/completeusersproof/isosctrlem1altvd.html 44930.
(Contributed by Alan Sare, 22-Apr-2018.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) = 1 ∧
¬ 1 = 𝐴) →
(ℑ‘(log‘(1 − 𝐴))) ≠ π) |
| |
| Theorem | iunconnlem2 44931* |
The indexed union of connected overlapping subspaces sharing a common
point is connected. This proof was automatically derived by
completeusersproof from its Virtual Deduction proof counterpart
https://us.metamath.org/other/completeusersproof/iunconlem2vd.html.
As it is verified by the Metamath program, iunconnlem2 44931 verifies
https://us.metamath.org/other/completeusersproof/iunconlem2vd.html 44931.
(Contributed by Alan Sare, 22-Apr-2018.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (𝜓 ↔ ((((((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑣 ∈ 𝐽) ∧ (𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅) ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅) ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪ 𝑘 ∈ 𝐴 𝐵)) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣))) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ 𝑋)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐽 ↾t 𝐵) ∈ Conn)
⇒ ⊢ (𝜑 → (𝐽 ↾t ∪ 𝑘 ∈ 𝐴 𝐵) ∈ Conn) |
| |
| Theorem | iunconnALT 44932* |
The indexed union of connected overlapping subspaces sharing a common
point is connected. This proof was automatically derived by
completeusersproof from its Virtual Deduction proof counterpart
https://us.metamath.org/other/completeusersproof/iunconaltvd.html.
As it is verified by the Metamath program, iunconnALT 44932 verifies
https://us.metamath.org/other/completeusersproof/iunconaltvd.html 44932.
(Contributed by Alan Sare, 22-Apr-2018.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ 𝑋)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐽 ↾t 𝐵) ∈ Conn)
⇒ ⊢ (𝜑 → (𝐽 ↾t ∪ 𝑘 ∈ 𝐴 𝐵) ∈ Conn) |
| |
| Theorem | sineq0ALT 44933 |
A complex number whose sine is zero is an integer multiple of π.
The Virtual Deduction form of the proof is
https://us.metamath.org/other/completeusersproof/sineq0altvd.html.
The
Metamath form of the proof is sineq0ALT 44933. The Virtual Deduction proof
is based on Mario Carneiro's revision of Norm Megill's proof of sineq0 26440.
The Virtual Deduction proof is verified by automatically transforming it
into the Metamath form of the proof using completeusersproof, which is
verified by the Metamath program. The proof of
https://us.metamath.org/other/completeusersproof/sineq0altro.html 26440 is a
form of the completed proof which preserves the Virtual Deduction proof's
step numbers and their ordering. (Contributed by Alan Sare, 13-Jun-2018.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ ℂ →
((sin‘𝐴) = 0 ↔
(𝐴 / π) ∈
ℤ)) |
| |
| 21.42 Mathbox for Eric
Schmidt
|
| |
| 21.42.1 Miscellany
|
| |
| Theorem | rspesbcd 44934* |
Restricted quantifier version of spesbcd 3849. (Contributed by Eric
Schmidt, 29-Sep-2025.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝐵)
& ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
| |
| Theorem | rext0 44935* |
Nonempty existential quantification of a theorem is true. (Contributed
by Eric Schmidt, 19-Oct-2025.)
|
| ⊢ 𝜑 ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ 𝐴 ≠ ∅) |
| |
| 21.42.2 Study of dfbi1ALT
|
| |
| Theorem | dfbi1ALTa 44936 |
Version of dfbi1ALT 214 using ⊤ for
step 2 and shortened using a1i 11,
a2i 14, and con4i 114. (Contributed by Eric Schmidt,
22-Oct-2025.)
(New usage is discouraged.) (Proof modification is discouraged.)
|
| ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) |
| |
| Theorem | simprimi 44937 |
Inference associated with simprim 166. Proved exactly as step 11 is
obtained from step 4 in dfbi1ALTa 44936. (Contributed by Eric Schmidt,
22-Oct-2025.) (New usage is discouraged.)
(Proof modification is discouraged.)
|
| ⊢ ¬ (𝜑 → ¬ 𝜓) ⇒ ⊢ 𝜓 |
| |
| Theorem | dfbi1ALTb 44938 |
Further shorten dfbi1ALTa 44936 using simprimi 44937. (Contributed by Eric
Schmidt, 22-Oct-2025.) (New usage is discouraged.)
(Proof modification is discouraged.)
|
| ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) |
| |
| 21.42.3 Relation-preserving
functions
|
| |
| Syntax | wrelp 44939 |
Extend the definition of a wff to include the relation-preserving
property. (Contributed by Eric Schmidt, 11-Oct-2025.)
|
| wff 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) |
| |
| Definition | df-relp 44940* |
Define the relation-preserving predicate. This is a viable notion of
"homomorphism" corresponding to df-isom 6523. (Contributed by Eric
Schmidt, 11-Oct-2025.)
|
| ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ (𝐻:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
| |
| Theorem | relpeq1 44941 |
Equality theorem for relation-preserving functions. (Contributed by
Eric Schmidt, 11-Oct-2025.)
|
| ⊢ (𝐻 = 𝐺 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐺 RelPres 𝑅, 𝑆(𝐴, 𝐵))) |
| |
| Theorem | relpeq2 44942 |
Equality theorem for relation-preserving functions. (Contributed by
Eric Schmidt, 11-Oct-2025.)
|
| ⊢ (𝑅 = 𝑇 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑇, 𝑆(𝐴, 𝐵))) |
| |
| Theorem | relpeq3 44943 |
Equality theorem for relation-preserving functions. (Contributed by
Eric Schmidt, 11-Oct-2025.)
|
| ⊢ (𝑆 = 𝑇 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑅, 𝑇(𝐴, 𝐵))) |
| |
| Theorem | relpeq4 44944 |
Equality theorem for relation-preserving functions. (Contributed by
Eric Schmidt, 11-Oct-2025.)
|
| ⊢ (𝐴 = 𝐶 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑅, 𝑆(𝐶, 𝐵))) |
| |
| Theorem | relpeq5 44945 |
Equality theorem for relation-preserving functions. (Contributed by
Eric Schmidt, 11-Oct-2025.)
|
| ⊢ (𝐵 = 𝐶 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐶))) |
| |
| Theorem | nfrelp 44946 |
Bound-variable hypothesis builder for a relation-preserving function.
(Contributed by Eric Schmidt, 11-Oct-2025.)
|
| ⊢
Ⅎ𝑥𝐻
& ⊢ Ⅎ𝑥𝑅
& ⊢ Ⅎ𝑥𝑆
& ⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) |
| |
| Theorem | relpf 44947 |
A relation-preserving function is a function. (Contributed by Eric
Schmidt, 11-Oct-2025.)
|
| ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → 𝐻:𝐴⟶𝐵) |
| |
| Theorem | relprel 44948 |
A relation-preserving function preserves the relation. (Contributed by
Eric Schmidt, 11-Oct-2025.)
|
| ⊢ ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶𝑅𝐷 → (𝐻‘𝐶)𝑆(𝐻‘𝐷))) |
| |
| Theorem | relpmin 44949 |
A preimage of a minimal element under a relation-preserving function is
minimal. Essentially one half of isomin 7315. (Contributed by Eric
Schmidt, 11-Oct-2025.)
|
| ⊢ ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) = ∅ → (𝐶 ∩ (◡𝑅 “ {𝐷})) = ∅)) |
| |
| Theorem | relpfrlem 44950* |
Lemma for relpfr 44951. Proved without using the Axiom of
Replacement.
This is isofrlem 7318 with weaker hypotheses. (Contributed by Eric
Schmidt, 11-Oct-2025.)
|
| ⊢ (𝜑 → 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵)) & ⊢ (𝜑 → (𝐻 “ 𝑥) ∈ V) ⇒ ⊢ (𝜑 → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) |
| |
| Theorem | relpfr 44951 |
If the image of a set under a relation-preserving function is
well-founded, so is the set. See isofr 7320 for a bidirectional statement.
A more general version of Lemma I.9.9 of [Kunen2] p. 47. (Contributed
by Eric Schmidt, 11-Oct-2025.)
|
| ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) |
| |
| 21.42.4 Orbits
|
| |
| Theorem | orbitex 44952 |
Orbits exist. Given a set 𝐴 and a function 𝐹, the
orbit of 𝐴
under 𝐹 is the smallest set 𝑍 such
that 𝐴
∈ 𝑍 and 𝑍 is
closed under 𝐹. (Contributed by Eric Schmidt,
6-Nov-2025.)
|
| ⊢ (rec(𝐹, 𝐴) “ ω) ∈
V |
| |
| Theorem | orbitinit 44953 |
A set is contained in its orbit. (Contributed by Eric Schmidt,
6-Nov-2025.)
|
| ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ (rec(𝐹, 𝐴) “ ω)) |
| |
| Theorem | orbitcl 44954 |
The orbit under a function is closed under the function. (Contributed
by Eric Schmidt, 6-Nov-2025.)
|
| ⊢ (𝐵 ∈ (rec(𝐹, 𝐴) “ ω) → (𝐹‘𝐵) ∈ (rec(𝐹, 𝐴) “ ω)) |
| |
| Theorem | orbitclmpt 44955 |
Version of orbitcl 44954 using maps-to notation. (Contributed by
Eric
Schmidt, 6-Nov-2025.)
|
| ⊢
Ⅎ𝑥𝐵
& ⊢ Ⅎ𝑥𝐷
& ⊢ 𝑍 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) “ ω) & ⊢ (𝑥 = 𝐵 → 𝐶 = 𝐷) ⇒ ⊢ ((𝐵 ∈ 𝑍 ∧ 𝐷 ∈ 𝑉) → 𝐷 ∈ 𝑍) |
| |
| 21.42.5 Well-founded sets
|
| |
| Theorem | trwf 44956 |
The class of well-founded sets is transitive. (Contributed by Eric
Schmidt, 9-Sep-2025.)
|
| ⊢ Tr ∪ (𝑅1 “ On) |
| |
| Theorem | rankrelp 44957 |
The rank function preserves ∈. (Contributed by
Eric Schmidt,
11-Oct-2025.)
|
| ⊢ rank RelPres E
, E (∪ (𝑅1 “ On),
On) |
| |
| Theorem | wffr 44958 |
The class of well-founded sets is well-founded. Lemma I.9.24(2) of
[Kunen2] p. 53. (Contributed by Eric
Schmidt, 11-Oct-2025.)
|
| ⊢ E Fr ∪ (𝑅1 “ On) |
| |
| Theorem | trfr 44959 |
A transitive class well-founded by ∈ is a subclass
of the class of
well-founded sets. Part of Lemma I.9.21 of [Kunen2] p. 53.
(Contributed by Eric Schmidt, 26-Oct-2025.)
|
| ⊢ ((Tr 𝐴 ∧ E Fr 𝐴) → 𝐴 ⊆ ∪
(𝑅1 “ On)) |
| |
| Theorem | tcfr 44960 |
A set is well-founded if and only if its transitive closure is
well-founded by ∈. This characterization
of well-founded sets is
that in Definition I.9.20 of [Kunen2] p.
53. (Contributed by Eric
Schmidt, 26-Oct-2025.)
|
| ⊢ 𝐴 ∈
V ⇒ ⊢ (𝐴 ∈ ∪
(𝑅1 “ On) ↔ E Fr (TC‘𝐴)) |
| |
| Theorem | xpwf 44961 |
The Cartesian product of two well-founded sets is well-founded.
(Contributed by Eric Schmidt, 12-Sep-2025.)
|
| ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → (𝐴 × 𝐵) ∈ ∪
(𝑅1 “ On)) |
| |
| Theorem | dmwf 44962 |
The domain of a well-founded set is well-founded. (Contributed by Eric
Schmidt, 12-Sep-2025.)
|
| ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → dom 𝐴 ∈ ∪ (𝑅1 “ On)) |
| |
| Theorem | rnwf 44963 |
The range of a well-founded set is well-founded. (Contributed by Eric
Schmidt, 12-Sep-2025.)
|
| ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ran 𝐴 ∈ ∪ (𝑅1 “ On)) |
| |
| Theorem | relwf 44964 |
A relation is a well-founded set iff its domain and range are.
(Contributed by Eric Schmidt, 29-Sep-2025.)
|
| ⊢ (Rel 𝑅 → (𝑅 ∈ ∪
(𝑅1 “ On) ↔ (dom 𝑅 ∈ ∪
(𝑅1 “ On) ∧ ran 𝑅 ∈ ∪
(𝑅1 “ On)))) |
| |
| 21.42.6 Absoluteness in transitive
models
|
| |
| Theorem | ralabso 44965* |
Simplification of restricted quantification in a transitive class. When
𝜑 is quantifier-free, this shows that
the formula ∀𝑥 ∈ 𝑦𝜑
is absolute for transitive models, which is a particular case of Lemma
I.16.2 of [Kunen2] p. 95. (Contributed
by Eric Schmidt,
19-Oct-2025.)
|
| ⊢ ((Tr 𝑀 ∧ 𝐴 ∈ 𝑀) → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 → 𝜑))) |
| |
| Theorem | rexabso 44966* |
Simplification of restricted quantification in a transitive class. When
𝜑 is quantifier-free, this shows that
the formula ∃𝑥 ∈ 𝑦𝜑
is absolute for transitive models, which is a particular case of Lemma
I.16.2 of [Kunen2] p. 95. (Contributed
by Eric Schmidt,
19-Oct-2025.)
|
| ⊢ ((Tr 𝑀 ∧ 𝐴 ∈ 𝑀) → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 ∧ 𝜑))) |
| |
| Theorem | ralabsod 44967* |
Deduction form of ralabso 44965. (Contributed by Eric Schmidt,
19-Oct-2025.)
|
| ⊢ (𝜑 → Tr 𝑀) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑀) → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 → 𝜓))) |
| |
| Theorem | rexabsod 44968* |
Deduction form of rexabso 44966. (Contributed by Eric Schmidt,
19-Oct-2025.)
|
| ⊢ (𝜑 → Tr 𝑀) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑀) → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 ∧ 𝜓))) |
| |
| Theorem | ralabsobidv 44969* |
Formula-building lemma for proving absoluteness results.
(Contributed by Eric Schmidt, 19-Oct-2025.)
|
| ⊢ (𝜑 → Tr 𝑀)
& ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑀) → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 → 𝜒))) |
| |
| Theorem | rexabsobidv 44970* |
Formula-building lemma for proving absoluteness results.
(Contributed by Eric Schmidt, 19-Oct-2025.)
|
| ⊢ (𝜑 → Tr 𝑀)
& ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑀) → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 ∧ 𝜒))) |
| |
| Theorem | ssabso 44971* |
The notion "𝑥 is a subset of 𝑦 " is absolute for
transitive
models. Compare Example I.16.3 of [Kunen2] p. 96 and the following
discussion. (Contributed by Eric Schmidt, 19-Oct-2025.)
|
| ⊢ ((Tr 𝑀 ∧ 𝐴 ∈ 𝑀) → (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵))) |
| |
| Theorem | disjabso 44972* |
Disjointness is absolute for transitive models. Compare Example I.16.3
of [Kunen2] p. 96 and the following
discussion. (Contributed by Eric
Schmidt, 19-Oct-2025.)
|
| ⊢ ((Tr 𝑀 ∧ 𝐴 ∈ 𝑀) → ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵))) |
| |
| Theorem | n0abso 44973* |
Nonemptiness is absolute for transitive models. Compare Example I.16.3
of [Kunen2] p. 96 and the following
discussion. (Contributed by Eric
Schmidt, 19-Oct-2025.)
|
| ⊢ ((Tr 𝑀 ∧ 𝐴 ∈ 𝑀) → (𝐴 ≠ ∅ ↔ ∃𝑥 ∈ 𝑀 𝑥 ∈ 𝐴)) |
| |
| 21.42.7 Lemmas for showing axioms hold in
models
|
| |
| Theorem | traxext 44974* |
A transitive class models the Axiom of Extensionality ax-ext 2702. Lemma
II.2.4(1) of [Kunen2] p. 111.
(Contributed by Eric Schmidt,
11-Sep-2025.)
|
| ⊢ (Tr 𝑀 → ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦)) |
| |
| Theorem | modelaxreplem1 44975* |
Lemma for modelaxrep 44978. We show that 𝑀 is closed under taking
subsets. (Contributed by Eric Schmidt, 29-Sep-2025.)
|
| ⊢ (𝜓 → 𝑥 ⊆ 𝑀)
& ⊢ (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓 ∈ 𝑀 ∧ ran 𝑓 ⊆ 𝑀) → ran 𝑓 ∈ 𝑀)) & ⊢ (𝜓 → ∅ ∈ 𝑀) & ⊢ (𝜓 → 𝑥 ∈ 𝑀)
& ⊢ 𝐴 ⊆ 𝑥 ⇒ ⊢ (𝜓 → 𝐴 ∈ 𝑀) |
| |
| Theorem | modelaxreplem2 44976* |
Lemma for modelaxrep 44978. We define a class 𝐹 and show that the
antecedent of Replacement implies that 𝐹 is a function. We use
Replacement (in the form of funex 7196) to show that 𝐹 exists. Then
we show that, under our hypotheses, the range of 𝐹 is a
member of
𝑀. (Contributed by Eric Schmidt,
29-Sep-2025.)
|
| ⊢ (𝜓 → 𝑥 ⊆ 𝑀)
& ⊢ (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓 ∈ 𝑀 ∧ ran 𝑓 ⊆ 𝑀) → ran 𝑓 ∈ 𝑀)) & ⊢ (𝜓 → ∅ ∈ 𝑀) & ⊢ (𝜓 → 𝑥 ∈ 𝑀)
& ⊢ Ⅎ𝑤𝜓
& ⊢ Ⅎ𝑧𝜓
& ⊢ Ⅎ𝑧𝐹
& ⊢ 𝐹 = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ 𝑥 ∧ (𝑧 ∈ 𝑀 ∧ ∀𝑦𝜑))} & ⊢ (𝜓 → (𝑤 ∈ 𝑀 → ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 (∀𝑦𝜑 → 𝑧 = 𝑦))) ⇒ ⊢ (𝜓 → ran 𝐹 ∈ 𝑀) |
| |
| Theorem | modelaxreplem3 44977* |
Lemma for modelaxrep 44978. We show that the consequent of Replacement
is satisfied with ran 𝐹 as the value of 𝑦.
(Contributed by
Eric Schmidt, 29-Sep-2025.)
|
| ⊢ (𝜓 → 𝑥 ⊆ 𝑀)
& ⊢ (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓 ∈ 𝑀 ∧ ran 𝑓 ⊆ 𝑀) → ran 𝑓 ∈ 𝑀)) & ⊢ (𝜓 → ∅ ∈ 𝑀) & ⊢ (𝜓 → 𝑥 ∈ 𝑀)
& ⊢ Ⅎ𝑤𝜓
& ⊢ Ⅎ𝑧𝜓
& ⊢ Ⅎ𝑧𝐹
& ⊢ 𝐹 = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ 𝑥 ∧ (𝑧 ∈ 𝑀 ∧ ∀𝑦𝜑))} & ⊢ (𝜓 → (𝑤 ∈ 𝑀 → ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 (∀𝑦𝜑 → 𝑧 = 𝑦))) ⇒ ⊢ (𝜓 → ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑀 (𝑤 ∈ 𝑥 ∧ ∀𝑦𝜑))) |
| |
| Theorem | modelaxrep 44978* |
Conditions which guarantee that a class models the Axiom of Replacement
ax-rep 5237. Similar to Lemma II.2.4(6) of [Kunen2] p. 111. The first
two hypotheses are those in Kunen. The reason for the third hypothesis
that our version of Replacement is different from Kunen's (which is
zfrep6 7936). If we assumed Regularity, we could
eliminate this extra
hypothesis, since under Regularity, the empty set is a member of every
non-empty transitive class.
Note that, to obtain the relativization of an instance of Replacement to
𝑀, the formula ∀𝑦𝜑 would need to be replaced
with
∀𝑦 ∈ 𝑀𝜒, where 𝜒 is 𝜑 with all quantifiers
relativized to 𝑀. However, we can obtain this by
using
𝑦
∈ 𝑀 ∧ 𝜒 for 𝜑 in this theorem, so it
does establish that
all instances of Replacement hold in 𝑀. (Contributed by Eric
Schmidt, 29-Sep-2025.)
|
| ⊢ (𝜓 → Tr 𝑀)
& ⊢ (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓 ∈ 𝑀 ∧ ran 𝑓 ⊆ 𝑀) → ran 𝑓 ∈ 𝑀)) & ⊢ (𝜓 → ∅ ∈ 𝑀)
⇒ ⊢ (𝜓 → ∀𝑥 ∈ 𝑀 (∀𝑤 ∈ 𝑀 ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 (∀𝑦𝜑 → 𝑧 = 𝑦) → ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑀 (𝑤 ∈ 𝑥 ∧ ∀𝑦𝜑)))) |
| |
| Theorem | ssclaxsep 44979* |
A class that is closed under subsets models the Axiom of Separation
ax-sep 5254. Lemma II.2.4(3) of [Kunen2] p. 111.
Note that, to obtain the relativization of an instance of Separation to
𝑀, the formula 𝜑 would need to be replaced
with its
relativization to 𝑀. However, this new formula is a
valid
substitution for 𝜑, so this theorem does establish that
all
instances of Separation hold in 𝑀. (Contributed by Eric Schmidt,
29-Sep-2025.)
|
| ⊢ (∀𝑧 ∈ 𝑀 𝒫 𝑧 ⊆ 𝑀 → ∀𝑧 ∈ 𝑀 ∃𝑦 ∈ 𝑀 ∀𝑥 ∈ 𝑀 (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑))) |
| |
| Theorem | 0elaxnul 44980* |
A class that contains the empty set models the Null Set Axiom ax-nul 5264.
(Contributed by Eric Schmidt, 19-Oct-2025.)
|
| ⊢ (∅
∈ 𝑀 →
∃𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ¬ 𝑦 ∈ 𝑥) |
| |
| Theorem | pwclaxpow 44981* |
Suppose 𝑀 is a transitive class that is closed
under power sets
intersected with 𝑀. Then, 𝑀 models the Axiom of
Power Sets
ax-pow 5323. One direction of Lemma II.2.8 of [Kunen2] p. 113.
(Contributed by Eric Schmidt, 19-Oct-2025.)
|
| ⊢ ((Tr 𝑀 ∧ ∀𝑥 ∈ 𝑀 (𝒫 𝑥 ∩ 𝑀) ∈ 𝑀) → ∀𝑥 ∈ 𝑀 ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 (∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
| |
| Theorem | prclaxpr 44982* |
A class that is closed under the pairing operation models the Axiom of
Pairing ax-pr 5390. Lemma II.2.4(4) of [Kunen2] p. 111. (Contributed by
Eric Schmidt, 29-Sep-2025.)
|
| ⊢ (∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 {𝑥, 𝑦} ∈ 𝑀 → ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∃𝑧 ∈ 𝑀 ∀𝑤 ∈ 𝑀 ((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧)) |
| |
| Theorem | uniclaxun 44983* |
A class that is closed under the union operation models the Axiom of
Union ax-un 7714. Lemma II.2.4(5) of [Kunen2] p. 111. (Contributed by
Eric Schmidt, 1-Oct-2025.)
|
| ⊢ (∀𝑥 ∈ 𝑀 ∪ 𝑥 ∈ 𝑀 → ∀𝑥 ∈ 𝑀 ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 (∃𝑤 ∈ 𝑀 (𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
| |
| Theorem | sswfaxreg 44984* |
A subclass of the class of well-founded sets models the Axiom of
Regularity ax-reg 9552. Lemma II.2.4(2) of [Kunen2] p. 111. (Contributed
by Eric Schmidt, 19-Oct-2025.)
|
| ⊢ (𝑀 ⊆ ∪ (𝑅1 “ On) → ∀𝑥 ∈ 𝑀 (∃𝑦 ∈ 𝑀 𝑦 ∈ 𝑥 → ∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)))) |
| |
| Theorem | omssaxinf2 44985* |
A class that contains all ordinals up to and including ω models
the Axiom of Infinity ax-inf2 9601. The antecedent of this theorem is
not
enough to guarantee that the class models the alternate axiom ax-inf 9598.
(Contributed by Eric Schmidt, 19-Oct-2025.)
|
| ⊢ ((ω
⊆ 𝑀 ∧ ω
∈ 𝑀) →
∃𝑥 ∈ 𝑀 (∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 → ∃𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 ∧ ∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))))) |
| |
| Theorem | omelaxinf2 44986* |
A transitive class that contains ω models the
Axiom of Infinity
ax-inf2 9601. Lemma II.2.11(7) of [Kunen2] p. 114. Kunen has the
additional hypotheses that the Extensionality, Separation, Pairing, and
Union axioms are true in 𝑀. This, apparently, is because
Kunen's
statement of the Axiom of Infinity uses the defined notions ∅ and
suc, and these axioms guarantee that these
notions are
well-defined. When we state the axiom using primitives only, the need
for these hypotheses disappears.
The antecedent of this theorem is not enough to guarantee that the class
models the alternate axiom ax-inf 9598. (Contributed by Eric Schmidt,
19-Oct-2025.)
|
| ⊢ ((Tr 𝑀 ∧ ω ∈ 𝑀) → ∃𝑥 ∈ 𝑀 (∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 → ∃𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 ∧ ∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))))) |
| |
| Theorem | dfac5prim 44987* |
dfac5 10089 expanded into primitives. (Contributed by
Eric Schmidt,
19-Oct-2025.)
|
| ⊢
(CHOICE ↔ ∀𝑥((∀𝑧(𝑧 ∈ 𝑥 → ∃𝑤 𝑤 ∈ 𝑧) ∧ ∀𝑧∀𝑤((𝑧 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦(𝑦 ∈ 𝑧 → ¬ 𝑦 ∈ 𝑤)))) → ∃𝑦∀𝑧(𝑧 ∈ 𝑥 → ∃𝑤∀𝑣((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) ↔ 𝑣 = 𝑤)))) |
| |
| Theorem | ac8prim 44988* |
ac8 10452 expanded into primitives. (Contributed by
Eric Schmidt,
19-Oct-2025.)
|
| ⊢
((∀𝑧(𝑧 ∈ 𝑥 → ∃𝑤 𝑤 ∈ 𝑧) ∧ ∀𝑧∀𝑤((𝑧 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦(𝑦 ∈ 𝑧 → ¬ 𝑦 ∈ 𝑤)))) → ∃𝑦∀𝑧(𝑧 ∈ 𝑥 → ∃𝑤∀𝑣((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) ↔ 𝑣 = 𝑤))) |
| |
| Theorem | modelac8prim 44989* |
If 𝑀 is a transitive class, then the
following are equivalent. (1)
Every nonempty set 𝑥 ∈ 𝑀 of pairwise disjoint nonempty sets
has a
choice set in 𝑀. (2) The class 𝑀 models
the Axiom of Choice,
in the form ac8prim 44988.
Lemma II.2.11(7) of [Kunen2] p. 114.
Kunen has the additional
hypotheses that the Extensionality, Separation, Pairing, and Union
axioms are true in 𝑀. This, apparently, is because
Kunen's
statement of the Axiom of Choice uses defined notions, including ∅
and ∩, and these axioms guarantee that these
notions are
well-defined. When we state the axiom using primitives only, the need
for these hypotheses disappears. (Contributed by Eric Schmidt,
19-Oct-2025.)
|
| ⊢ (Tr 𝑀 → (∀𝑥 ∈ 𝑀 ((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) ↔ ∀𝑥 ∈ 𝑀 ((∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 → ∃𝑤 ∈ 𝑀 𝑤 ∈ 𝑧) ∧ ∀𝑧 ∈ 𝑀 ∀𝑤 ∈ 𝑀 ((𝑧 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦 ∈ 𝑀 (𝑦 ∈ 𝑧 → ¬ 𝑦 ∈ 𝑤)))) → ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 → ∃𝑤 ∈ 𝑀 ∀𝑣 ∈ 𝑀 ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) ↔ 𝑣 = 𝑤))))) |
| |
| 21.42.8 The class of well-founded sets is a
model for ZFC
|
| |
| Theorem | wfaxext 44990* |
The class of well-founded sets models the Axiom of Extensionality
ax-ext 2702. Part of Corollary II.2.5 of [Kunen2] p. 112.
This is the first of a series of theorems showing that all the axioms
of ZFC hold in the class of well-founded sets, which we here denote by
𝑊. More precisely, for each axiom of
ZFC, we obtain a provable
statement if we restrict all quantifiers to 𝑊 (including implicit
universal quantifiers on free variables).
None of these proofs use the Axiom of Regularity. In particular, the
Axiom of Regularity itself is proved to hold in 𝑊 without using
Regularity. Further, the Axiom of Choice is used only in the proof
that Choice holds in 𝑊. This has the consequence that any
theorem of ZF (possibly proved using Regularity) can be proved,
without using Regularity, to hold in 𝑊. This gives us a
relative
consistency result: If ZF without Regularity is consistent, so is ZF
itself. Similarly, if ZFC without Regularity is consistent, so is ZFC
itself. These consistency results are metatheorems and are part of
Theorem II.2.13 of [Kunen2] p. 114.
(Contributed by Eric Schmidt, 11-Sep-2025.) (Revised by Eric Schmidt,
29-Sep-2025.)
|
| ⊢ 𝑊 = ∪
(𝑅1 “ On) ⇒ ⊢ ∀𝑥 ∈ 𝑊 ∀𝑦 ∈ 𝑊 (∀𝑧 ∈ 𝑊 (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦) |
| |
| Theorem | wfaxrep 44991* |
The class of well-founded sets models the Axiom of Replacement
ax-rep 5237. Actually, our statement is stronger, since
it is an
instance of Replacement only when all quantifiers in ∀𝑦𝜑 are
relativized to 𝑊. Essentially part of Corollary
II.2.5 of
[Kunen2] p. 112, but note that our
Replacement is different from
Kunen's. (Contributed by Eric Schmidt, 29-Sep-2025.)
|
| ⊢ 𝑊 = ∪
(𝑅1 “ On) ⇒ ⊢ ∀𝑥 ∈ 𝑊 (∀𝑤 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (∀𝑦𝜑 → 𝑧 = 𝑦) → ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑊 (𝑤 ∈ 𝑥 ∧ ∀𝑦𝜑))) |
| |
| Theorem | wfaxsep 44992* |
The class of well-founded sets models the Axiom of Separation
ax-sep 5254. Actually, our statement is stronger, since
it is an
instance of Separation only when all quantifiers in 𝜑 are
relativized to 𝑊. Part of Corollary II.2.5 of [Kunen2] p. 112.
(Contributed by Eric Schmidt, 29-Sep-2025.)
|
| ⊢ 𝑊 = ∪
(𝑅1 “ On) ⇒ ⊢ ∀𝑧 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑥 ∈ 𝑊 (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) |
| |
| Theorem | wfaxnul 44993* |
The class of well-founded sets models the Null Set Axiom ax-nul 5264.
(Contributed by Eric Schmidt, 19-Oct-2025.)
|
| ⊢ 𝑊 = ∪
(𝑅1 “ On) ⇒ ⊢ ∃𝑥 ∈ 𝑊 ∀𝑦 ∈ 𝑊 ¬ 𝑦 ∈ 𝑥 |
| |
| Theorem | wfaxpow 44994* |
The class of well-founded sets models the Axioms of Power Sets. Part
of Corollary II.2.9 of [Kunen2] p.
113. (Contributed by Eric Schmidt,
19-Oct-2025.)
|
| ⊢ 𝑊 = ∪
(𝑅1 “ On) ⇒ ⊢ ∀𝑥 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (∀𝑤 ∈ 𝑊 (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
| |
| Theorem | wfaxpr 44995* |
The class of well-founded sets models the Axiom of Pairing ax-pr 5390.
Part of Corollary II.2.5 of [Kunen2]
p. 112. (Contributed by Eric
Schmidt, 29-Sep-2025.)
|
| ⊢ 𝑊 = ∪
(𝑅1 “ On) ⇒ ⊢ ∀𝑥 ∈ 𝑊 ∀𝑦 ∈ 𝑊 ∃𝑧 ∈ 𝑊 ∀𝑤 ∈ 𝑊 ((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) |
| |
| Theorem | wfaxun 44996* |
The class of well-founded sets models the Axiom of Union ax-un 7714.
Part of Corollary II.2.5 of [Kunen2]
p. 112. (Contributed by Eric
Schmidt, 19-Oct-2025.)
|
| ⊢ 𝑊 = ∪
(𝑅1 “ On) ⇒ ⊢ ∀𝑥 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (∃𝑤 ∈ 𝑊 (𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
| |
| Theorem | wfaxreg 44997* |
The class of well-founded sets models the Axiom of Regularity
ax-reg 9552. Part of Corollary II.2.5 of [Kunen2] p. 112. (Contributed
by Eric Schmidt, 19-Oct-2025.)
|
| ⊢ 𝑊 = ∪
(𝑅1 “ On) ⇒ ⊢ ∀𝑥 ∈ 𝑊 (∃𝑦 ∈ 𝑊 𝑦 ∈ 𝑥 → ∃𝑦 ∈ 𝑊 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑊 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) |
| |
| Theorem | wfaxinf2 44998* |
The class of well-founded sets models the Axiom of Infinity
ax-inf2 9601. Part of Corollary II.2.12 of [Kunen2] p. 114.
(Contributed by Eric Schmidt, 19-Oct-2025.)
|
| ⊢ 𝑊 = ∪
(𝑅1 “ On) ⇒ ⊢ ∃𝑥 ∈ 𝑊 (∃𝑦 ∈ 𝑊 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑊 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦 ∈ 𝑊 (𝑦 ∈ 𝑥 → ∃𝑧 ∈ 𝑊 (𝑧 ∈ 𝑥 ∧ ∀𝑤 ∈ 𝑊 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) |
| |
| Theorem | wfac8prim 44999* |
The class of well-founded sets 𝑊 models the Axiom of Choice.
Since the previous theorems show that all the ZF axioms hold in
𝑊, we may use any statement that ZF
proves is equivalent to
Choice to prove this. We use ac8prim 44988. Part of Corollary II.2.12
of [Kunen2] p. 114. (Contributed by
Eric Schmidt, 19-Oct-2025.)
|
| ⊢ 𝑊 = ∪
(𝑅1 “ On) ⇒ ⊢ ∀𝑥 ∈ 𝑊 ((∀𝑧 ∈ 𝑊 (𝑧 ∈ 𝑥 → ∃𝑤 ∈ 𝑊 𝑤 ∈ 𝑧) ∧ ∀𝑧 ∈ 𝑊 ∀𝑤 ∈ 𝑊 ((𝑧 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦 ∈ 𝑊 (𝑦 ∈ 𝑧 → ¬ 𝑦 ∈ 𝑤)))) → ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (𝑧 ∈ 𝑥 → ∃𝑤 ∈ 𝑊 ∀𝑣 ∈ 𝑊 ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) ↔ 𝑣 = 𝑤))) |
| |
| 21.42.9 Permutation models
|
| |
| Theorem | brpermmodel 45000 |
The membership relation in a permutation model. We use a permutation
𝐹 of the universe to define a relation
𝑅
that serves as the
membership relation in our model. The conclusion of this theorem is
Definition II.9.1 of [Kunen2] p. 148.
All the axioms of ZFC except
for Regularity hold in permutation models, and Regularity will be
false if 𝐹 is chosen appropriately. Thus,
permutation models can
be used to show that Regularity does not follow from the other axioms
(with the usual proviso that the axioms are consistent). (Contributed
by Eric Schmidt, 6-Nov-2025.)
|
| ⊢ 𝐹:V–1-1-onto→V
& ⊢ 𝑅 = (◡𝐹 ∘ E ) & ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (𝐴𝑅𝐵 ↔ 𝐴 ∈ (𝐹‘𝐵)) |