HomeHome Metamath Proof Explorer
Theorem List (p. 450 of 497)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30845)
  Hilbert Space Explorer  Hilbert Space Explorer
(30846-32368)
  Users' Mathboxes  Users' Mathboxes
(32369-49617)
 

Theorem List for Metamath Proof Explorer - 44901-45000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoreme2ebindALT 44901 Absorption of an existential quantifier of a double existential quantifier of non-distinct variables. The proof is derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in e2ebindVD 44884. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥 𝑥 = 𝑦 → (∃𝑥𝑦𝜑 ↔ ∃𝑦𝜑))
 
Theoremax6e2ndALT 44902* If at least two sets exist (dtru 5411), then the same is true expressed in an alternate form similar to the form of ax6e 2387. The proof is derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in ax6e2ndVD 44880. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
(¬ ∀𝑥 𝑥 = 𝑦 → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
 
Theoremax6e2ndeqALT 44903* "At least two sets exist" expressed in the form of dtru 5411 is logically equivalent to the same expressed in a form similar to ax6e 2387 if dtru 5411 is false implies 𝑢 = 𝑣. Proof derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in ax6e2ndeqVD 44881. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) ↔ ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
 
Theorem2sb5ndALT 44904* Equivalence for double substitution 2sb5 2278 without distinct 𝑥, 𝑦 requirement. 2sb5nd 44533 is derived from 2sb5ndVD 44882. The proof is derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in 2sb5ndVD 44882. (Contributed by Alan Sare, 19-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
 
TheoremchordthmALT 44905* The intersecting chords theorem. If points A, B, C, and D lie on a circle (with center Q, say), and the point P is on the interior of the segments AB and CD, then the two products of lengths PA · PB and PC · PD are equal. The Euclidean plane is identified with the complex plane, and the fact that P is on AB and on CD is expressed by the hypothesis that the angles APB and CPD are equal to π. The result is proven by using chordthmlem5 26796 twice to show that PA · PB and PC · PD both equal BQ 2 PQ 2 . This is similar to the proof of the theorem given in Euclid's Elements, where it is Proposition III.35. Proven by David Moews on 28-Feb-2017 as chordthm 26797. https://us.metamath.org/other/completeusersproof/chordthmaltvd.html 26797 is a Virtual Deduction User's Proof transcription of chordthm 26797. That VD User's Proof was input into completeusersproof, automatically generating this chordthmALT 44905 Metamath proof. (Contributed by Alan Sare, 19-Sep-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))    &   (𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)    &   (𝜑𝑃 ∈ ℂ)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑 → ((𝐴𝑃)𝐹(𝐵𝑃)) = π)    &   (𝜑 → ((𝐶𝑃)𝐹(𝐷𝑃)) = π)    &   (𝜑𝑄 ∈ ℂ)    &   (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))    &   (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐶𝑄)))    &   (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐷𝑄)))       (𝜑 → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷))))
 
Theoremisosctrlem1ALT 44906 Lemma for isosctr 26781. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart https://us.metamath.org/other/completeusersproof/isosctrlem1altvd.html 26781. As it is verified by the Metamath program, isosctrlem1ALT 44906 verifies https://us.metamath.org/other/completeusersproof/isosctrlem1altvd.html 44906. (Contributed by Alan Sare, 22-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≠ π)
 
Theoremiunconnlem2 44907* The indexed union of connected overlapping subspaces sharing a common point is connected. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart https://us.metamath.org/other/completeusersproof/iunconlem2vd.html. As it is verified by the Metamath program, iunconnlem2 44907 verifies https://us.metamath.org/other/completeusersproof/iunconlem2vd.html 44907. (Contributed by Alan Sare, 22-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜓 ↔ ((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))    &   (𝜑𝐽 ∈ (TopOn‘𝑋))    &   ((𝜑𝑘𝐴) → 𝐵𝑋)    &   ((𝜑𝑘𝐴) → 𝑃𝐵)    &   ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)       (𝜑 → (𝐽t 𝑘𝐴 𝐵) ∈ Conn)
 
TheoremiunconnALT 44908* The indexed union of connected overlapping subspaces sharing a common point is connected. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart https://us.metamath.org/other/completeusersproof/iunconaltvd.html. As it is verified by the Metamath program, iunconnALT 44908 verifies https://us.metamath.org/other/completeusersproof/iunconaltvd.html 44908. (Contributed by Alan Sare, 22-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝐽 ∈ (TopOn‘𝑋))    &   ((𝜑𝑘𝐴) → 𝐵𝑋)    &   ((𝜑𝑘𝐴) → 𝑃𝐵)    &   ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)       (𝜑 → (𝐽t 𝑘𝐴 𝐵) ∈ Conn)
 
Theoremsineq0ALT 44909 A complex number whose sine is zero is an integer multiple of π. The Virtual Deduction form of the proof is https://us.metamath.org/other/completeusersproof/sineq0altvd.html. The Metamath form of the proof is sineq0ALT 44909. The Virtual Deduction proof is based on Mario Carneiro's revision of Norm Megill's proof of sineq0 26483. The Virtual Deduction proof is verified by automatically transforming it into the Metamath form of the proof using completeusersproof, which is verified by the Metamath program. The proof of https://us.metamath.org/other/completeusersproof/sineq0altro.html 26483 is a form of the completed proof which preserves the Virtual Deduction proof's step numbers and their ordering. (Contributed by Alan Sare, 13-Jun-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (𝐴 / π) ∈ ℤ))
 
21.42  Mathbox for Eric Schmidt
 
21.42.1  Miscellany
 
Theoremrspesbcd 44910* Restricted quantifier version of spesbcd 3858. (Contributed by Eric Schmidt, 29-Sep-2025.)
(𝜑𝐴𝐵)    &   (𝜑[𝐴 / 𝑥]𝜓)       (𝜑 → ∃𝑥𝐵 𝜓)
 
Theoremrext0 44911* Nonempty existential quantification of a theorem is true. (Contributed by Eric Schmidt, 19-Oct-2025.)
𝜑       (∃𝑥𝐴 𝜑𝐴 ≠ ∅)
 
21.42.2  Study of dfbi1ALT
 
Theoremdfbi1ALTa 44912 Version of dfbi1ALT 214 using for step 2 and shortened using a1i 11, a2i 14, and con4i 114. (Contributed by Eric Schmidt, 22-Oct-2025.) (New usage is discouraged.) (Proof modification is discouraged.)
((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑)))
 
Theoremsimprimi 44913 Inference associated with simprim 166. Proved exactly as step 11 is obtained from step 4 in dfbi1ALTa 44912. (Contributed by Eric Schmidt, 22-Oct-2025.) (New usage is discouraged.) (Proof modification is discouraged.)
¬ (𝜑 → ¬ 𝜓)       𝜓
 
Theoremdfbi1ALTb 44914 Further shorten dfbi1ALTa 44912 using simprimi 44913. (Contributed by Eric Schmidt, 22-Oct-2025.) (New usage is discouraged.) (Proof modification is discouraged.)
((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑)))
 
21.42.3  Relation-preserving functions
 
Syntaxwrelp 44915 Extend the definition of a wff to include the relation-preserving property. (Contributed by Eric Schmidt, 11-Oct-2025.)
wff 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵)
 
Definitiondf-relp 44916* Define the relation-preserving predicate. This is a viable notion of "homomorphism" corresponding to df-isom 6539. (Contributed by Eric Schmidt, 11-Oct-2025.)
(𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ (𝐻:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦))))
 
Theoremrelpeq1 44917 Equality theorem for relation-preserving functions. (Contributed by Eric Schmidt, 11-Oct-2025.)
(𝐻 = 𝐺 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐺 RelPres 𝑅, 𝑆(𝐴, 𝐵)))
 
Theoremrelpeq2 44918 Equality theorem for relation-preserving functions. (Contributed by Eric Schmidt, 11-Oct-2025.)
(𝑅 = 𝑇 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑇, 𝑆(𝐴, 𝐵)))
 
Theoremrelpeq3 44919 Equality theorem for relation-preserving functions. (Contributed by Eric Schmidt, 11-Oct-2025.)
(𝑆 = 𝑇 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑅, 𝑇(𝐴, 𝐵)))
 
Theoremrelpeq4 44920 Equality theorem for relation-preserving functions. (Contributed by Eric Schmidt, 11-Oct-2025.)
(𝐴 = 𝐶 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑅, 𝑆(𝐶, 𝐵)))
 
Theoremrelpeq5 44921 Equality theorem for relation-preserving functions. (Contributed by Eric Schmidt, 11-Oct-2025.)
(𝐵 = 𝐶 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐶)))
 
Theoremnfrelp 44922 Bound-variable hypothesis builder for a relation-preserving function. (Contributed by Eric Schmidt, 11-Oct-2025.)
𝑥𝐻    &   𝑥𝑅    &   𝑥𝑆    &   𝑥𝐴    &   𝑥𝐵       𝑥 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵)
 
Theoremrelpf 44923 A relation-preserving function is a function. (Contributed by Eric Schmidt, 11-Oct-2025.)
(𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → 𝐻:𝐴𝐵)
 
Theoremrelprel 44924 A relation-preserving function preserves the relation. (Contributed by Eric Schmidt, 11-Oct-2025.)
((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝑅𝐷 → (𝐻𝐶)𝑆(𝐻𝐷)))
 
Theoremrelpmin 44925 A preimage of a minimal element under a relation-preserving function is minimal. Essentially one half of isomin 7329. (Contributed by Eric Schmidt, 11-Oct-2025.)
((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) = ∅ → (𝐶 ∩ (𝑅 “ {𝐷})) = ∅))
 
Theoremrelpfrlem 44926* Lemma for relpfr 44927. Proved without using the Axiom of Replacement. This is isofrlem 7332 with weaker hypotheses. (Contributed by Eric Schmidt, 11-Oct-2025.)
(𝜑𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵))    &   (𝜑 → (𝐻𝑥) ∈ V)       (𝜑 → (𝑆 Fr 𝐵𝑅 Fr 𝐴))
 
Theoremrelpfr 44927 If the image of a set under a relation-preserving function is well-founded, so is the set. See isofr 7334 for a bidirectional statement. A more general version of Lemma I.9.9 of [Kunen2] p. 47. (Contributed by Eric Schmidt, 11-Oct-2025.)
(𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → (𝑆 Fr 𝐵𝑅 Fr 𝐴))
 
21.42.4  Orbits
 
Theoremorbitex 44928 Orbits exist. Given a set 𝐴 and a function 𝐹, the orbit of 𝐴 under 𝐹 is the smallest set 𝑍 such that 𝐴𝑍 and 𝑍 is closed under 𝐹. (Contributed by Eric Schmidt, 6-Nov-2025.)
(rec(𝐹, 𝐴) “ ω) ∈ V
 
Theoremorbitinit 44929 A set is contained in its orbit. (Contributed by Eric Schmidt, 6-Nov-2025.)
(𝐴𝑉𝐴 ∈ (rec(𝐹, 𝐴) “ ω))
 
Theoremorbitcl 44930 The orbit under a function is closed under the function. (Contributed by Eric Schmidt, 6-Nov-2025.)
(𝐵 ∈ (rec(𝐹, 𝐴) “ ω) → (𝐹𝐵) ∈ (rec(𝐹, 𝐴) “ ω))
 
Theoremorbitclmpt 44931 Version of orbitcl 44930 using maps-to notation. (Contributed by Eric Schmidt, 6-Nov-2025.)
𝑥𝐵    &   𝑥𝐷    &   𝑍 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) “ ω)    &   (𝑥 = 𝐵𝐶 = 𝐷)       ((𝐵𝑍𝐷𝑉) → 𝐷𝑍)
 
21.42.5  Well-founded sets
 
Theoremtrwf 44932 The class of well-founded sets is transitive. (Contributed by Eric Schmidt, 9-Sep-2025.)
Tr (𝑅1 “ On)
 
Theoremrankrelp 44933 The rank function preserves . (Contributed by Eric Schmidt, 11-Oct-2025.)
rank RelPres E , E ( (𝑅1 “ On), On)
 
Theoremwffr 44934 The class of well-founded sets is well-founded. Lemma I.9.24(2) of [Kunen2] p. 53. (Contributed by Eric Schmidt, 11-Oct-2025.)
E Fr (𝑅1 “ On)
 
Theoremtrfr 44935 A transitive class well-founded by is a subclass of the class of well-founded sets. Part of Lemma I.9.21 of [Kunen2] p. 53. (Contributed by Eric Schmidt, 26-Oct-2025.)
((Tr 𝐴 ∧ E Fr 𝐴) → 𝐴 (𝑅1 “ On))
 
Theoremtcfr 44936 A set is well-founded if and only if its transitive closure is well-founded by . This characterization of well-founded sets is that in Definition I.9.20 of [Kunen2] p. 53. (Contributed by Eric Schmidt, 26-Oct-2025.)
𝐴 ∈ V       (𝐴 (𝑅1 “ On) ↔ E Fr (TC‘𝐴))
 
Theoremxpwf 44937 The Cartesian product of two well-founded sets is well-founded. (Contributed by Eric Schmidt, 12-Sep-2025.)
((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (𝐴 × 𝐵) ∈ (𝑅1 “ On))
 
Theoremdmwf 44938 The domain of a well-founded set is well-founded. (Contributed by Eric Schmidt, 12-Sep-2025.)
(𝐴 (𝑅1 “ On) → dom 𝐴 (𝑅1 “ On))
 
Theoremrnwf 44939 The range of a well-founded set is well-founded. (Contributed by Eric Schmidt, 12-Sep-2025.)
(𝐴 (𝑅1 “ On) → ran 𝐴 (𝑅1 “ On))
 
Theoremrelwf 44940 A relation is a well-founded set iff its domain and range are. (Contributed by Eric Schmidt, 29-Sep-2025.)
(Rel 𝑅 → (𝑅 (𝑅1 “ On) ↔ (dom 𝑅 (𝑅1 “ On) ∧ ran 𝑅 (𝑅1 “ On))))
 
21.42.6  Absoluteness in transitive models
 
Theoremralabso 44941* Simplification of restricted quantification in a transitive class. When 𝜑 is quantifier-free, this shows that the formula 𝑥𝑦𝜑 is absolute for transitive models, which is a particular case of Lemma I.16.2 of [Kunen2] p. 95. (Contributed by Eric Schmidt, 19-Oct-2025.)
((Tr 𝑀𝐴𝑀) → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝑀 (𝑥𝐴𝜑)))
 
Theoremrexabso 44942* Simplification of restricted quantification in a transitive class. When 𝜑 is quantifier-free, this shows that the formula 𝑥𝑦𝜑 is absolute for transitive models, which is a particular case of Lemma I.16.2 of [Kunen2] p. 95. (Contributed by Eric Schmidt, 19-Oct-2025.)
((Tr 𝑀𝐴𝑀) → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝑀 (𝑥𝐴𝜑)))
 
Theoremralabsod 44943* Deduction form of ralabso 44941. (Contributed by Eric Schmidt, 19-Oct-2025.)
(𝜑 → Tr 𝑀)       ((𝜑𝐴𝑀) → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝑀 (𝑥𝐴𝜓)))
 
Theoremrexabsod 44944* Deduction form of rexabso 44942. (Contributed by Eric Schmidt, 19-Oct-2025.)
(𝜑 → Tr 𝑀)       ((𝜑𝐴𝑀) → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝑀 (𝑥𝐴𝜓)))
 
Theoremralabsobidv 44945* Formula-building lemma for proving absoluteness results. (Contributed by Eric Schmidt, 19-Oct-2025.)
(𝜑 → Tr 𝑀)    &   (𝜑 → (𝜓𝜒))       ((𝜑𝐴𝑀) → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝑀 (𝑥𝐴𝜒)))
 
Theoremrexabsobidv 44946* Formula-building lemma for proving absoluteness results. (Contributed by Eric Schmidt, 19-Oct-2025.)
(𝜑 → Tr 𝑀)    &   (𝜑 → (𝜓𝜒))       ((𝜑𝐴𝑀) → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝑀 (𝑥𝐴𝜒)))
 
Theoremssabso 44947* The notion "𝑥 is a subset of 𝑦 " is absolute for transitive models. Compare Example I.16.3 of [Kunen2] p. 96 and the following discussion. (Contributed by Eric Schmidt, 19-Oct-2025.)
((Tr 𝑀𝐴𝑀) → (𝐴𝐵 ↔ ∀𝑥𝑀 (𝑥𝐴𝑥𝐵)))
 
Theoremdisjabso 44948* Disjointness is absolute for transitive models. Compare Example I.16.3 of [Kunen2] p. 96 and the following discussion. (Contributed by Eric Schmidt, 19-Oct-2025.)
((Tr 𝑀𝐴𝑀) → ((𝐴𝐵) = ∅ ↔ ∀𝑥𝑀 (𝑥𝐴 → ¬ 𝑥𝐵)))
 
Theoremn0abso 44949* Nonemptiness is absolute for transitive models. Compare Example I.16.3 of [Kunen2] p. 96 and the following discussion. (Contributed by Eric Schmidt, 19-Oct-2025.)
((Tr 𝑀𝐴𝑀) → (𝐴 ≠ ∅ ↔ ∃𝑥𝑀 𝑥𝐴))
 
21.42.7  Lemmas for showing axioms hold in models
 
Theoremtraxext 44950* A transitive class models the Axiom of Extensionality ax-ext 2707. Lemma II.2.4(1) of [Kunen2] p. 111. (Contributed by Eric Schmidt, 11-Sep-2025.)
(Tr 𝑀 → ∀𝑥𝑀𝑦𝑀 (∀𝑧𝑀 (𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦))
 
Theoremmodelaxreplem1 44951* Lemma for modelaxrep 44954. We show that 𝑀 is closed under taking subsets. (Contributed by Eric Schmidt, 29-Sep-2025.)
(𝜓𝑥𝑀)    &   (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀))    &   (𝜓 → ∅ ∈ 𝑀)    &   (𝜓𝑥𝑀)    &   𝐴𝑥       (𝜓𝐴𝑀)
 
Theoremmodelaxreplem2 44952* Lemma for modelaxrep 44954. We define a class 𝐹 and show that the antecedent of Replacement implies that 𝐹 is a function. We use Replacement (in the form of funex 7210) to show that 𝐹 exists. Then we show that, under our hypotheses, the range of 𝐹 is a member of 𝑀. (Contributed by Eric Schmidt, 29-Sep-2025.)
(𝜓𝑥𝑀)    &   (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀))    &   (𝜓 → ∅ ∈ 𝑀)    &   (𝜓𝑥𝑀)    &   𝑤𝜓    &   𝑧𝜓    &   𝑧𝐹    &   𝐹 = {⟨𝑤, 𝑧⟩ ∣ (𝑤𝑥 ∧ (𝑧𝑀 ∧ ∀𝑦𝜑))}    &   (𝜓 → (𝑤𝑀 → ∃𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)))       (𝜓 → ran 𝐹𝑀)
 
Theoremmodelaxreplem3 44953* Lemma for modelaxrep 44954. We show that the consequent of Replacement is satisfied with ran 𝐹 as the value of 𝑦. (Contributed by Eric Schmidt, 29-Sep-2025.)
(𝜓𝑥𝑀)    &   (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀))    &   (𝜓 → ∅ ∈ 𝑀)    &   (𝜓𝑥𝑀)    &   𝑤𝜓    &   𝑧𝜓    &   𝑧𝐹    &   𝐹 = {⟨𝑤, 𝑧⟩ ∣ (𝑤𝑥 ∧ (𝑧𝑀 ∧ ∀𝑦𝜑))}    &   (𝜓 → (𝑤𝑀 → ∃𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)))       (𝜓 → ∃𝑦𝑀𝑧𝑀 (𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)))
 
Theoremmodelaxrep 44954* Conditions which guarantee that a class models the Axiom of Replacement ax-rep 5249. Similar to Lemma II.2.4(6) of [Kunen2] p. 111. The first two hypotheses are those in Kunen. The reason for the third hypothesis that our version of Replacement is different from Kunen's (which is zfrep6 7951). If we assumed Regularity, we could eliminate this extra hypothesis, since under Regularity, the empty set is a member of every non-empty transitive class.

Note that, to obtain the relativization of an instance of Replacement to 𝑀, the formula 𝑦𝜑 would need to be replaced with 𝑦𝑀𝜒, where 𝜒 is 𝜑 with all quantifiers relativized to 𝑀. However, we can obtain this by using 𝑦𝑀𝜒 for 𝜑 in this theorem, so it does establish that all instances of Replacement hold in 𝑀. (Contributed by Eric Schmidt, 29-Sep-2025.)

(𝜓 → Tr 𝑀)    &   (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀))    &   (𝜓 → ∅ ∈ 𝑀)       (𝜓 → ∀𝑥𝑀 (∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑀𝑧𝑀 (𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑))))
 
Theoremssclaxsep 44955* A class that is closed under subsets models the Axiom of Separation ax-sep 5266. Lemma II.2.4(3) of [Kunen2] p. 111.

Note that, to obtain the relativization of an instance of Separation to 𝑀, the formula 𝜑 would need to be replaced with its relativization to 𝑀. However, this new formula is a valid substitution for 𝜑, so this theorem does establish that all instances of Separation hold in 𝑀. (Contributed by Eric Schmidt, 29-Sep-2025.)

(∀𝑧𝑀 𝒫 𝑧𝑀 → ∀𝑧𝑀𝑦𝑀𝑥𝑀 (𝑥𝑦 ↔ (𝑥𝑧𝜑)))
 
Theorem0elaxnul 44956* A class that contains the empty set models the Null Set Axiom ax-nul 5276. (Contributed by Eric Schmidt, 19-Oct-2025.)
(∅ ∈ 𝑀 → ∃𝑥𝑀𝑦𝑀 ¬ 𝑦𝑥)
 
Theorempwclaxpow 44957* Suppose 𝑀 is a transitive class that is closed under power sets intersected with 𝑀. Then, 𝑀 models the Axiom of Power Sets ax-pow 5335. One direction of Lemma II.2.8 of [Kunen2] p. 113. (Contributed by Eric Schmidt, 19-Oct-2025.)
((Tr 𝑀 ∧ ∀𝑥𝑀 (𝒫 𝑥𝑀) ∈ 𝑀) → ∀𝑥𝑀𝑦𝑀𝑧𝑀 (∀𝑤𝑀 (𝑤𝑧𝑤𝑥) → 𝑧𝑦))
 
Theoremprclaxpr 44958* A class that is closed under the pairing operation models the Axiom of Pairing ax-pr 5402. Lemma II.2.4(4) of [Kunen2] p. 111. (Contributed by Eric Schmidt, 29-Sep-2025.)
(∀𝑥𝑀𝑦𝑀 {𝑥, 𝑦} ∈ 𝑀 → ∀𝑥𝑀𝑦𝑀𝑧𝑀𝑤𝑀 ((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑧))
 
Theoremuniclaxun 44959* A class that is closed under the union operation models the Axiom of Union ax-un 7727. Lemma II.2.4(5) of [Kunen2] p. 111. (Contributed by Eric Schmidt, 1-Oct-2025.)
(∀𝑥𝑀 𝑥𝑀 → ∀𝑥𝑀𝑦𝑀𝑧𝑀 (∃𝑤𝑀 (𝑧𝑤𝑤𝑥) → 𝑧𝑦))
 
Theoremsswfaxreg 44960* A subclass of the class of well-founded sets models the Axiom of Regularity ax-reg 9604. Lemma II.2.4(2) of [Kunen2] p. 111. (Contributed by Eric Schmidt, 19-Oct-2025.)
(𝑀 (𝑅1 “ On) → ∀𝑥𝑀 (∃𝑦𝑀 𝑦𝑥 → ∃𝑦𝑀 (𝑦𝑥 ∧ ∀𝑧𝑀 (𝑧𝑦 → ¬ 𝑧𝑥))))
 
Theoremomssaxinf2 44961* A class that contains all ordinals up to and including ω models the Axiom of Infinity ax-inf2 9653. The antecedent of this theorem is not enough to guarantee that the class models the alternate axiom ax-inf 9650. (Contributed by Eric Schmidt, 19-Oct-2025.)
((ω ⊆ 𝑀 ∧ ω ∈ 𝑀) → ∃𝑥𝑀 (∃𝑦𝑀 (𝑦𝑥 ∧ ∀𝑧𝑀 ¬ 𝑧𝑦) ∧ ∀𝑦𝑀 (𝑦𝑥 → ∃𝑧𝑀 (𝑧𝑥 ∧ ∀𝑤𝑀 (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))))
 
Theoremomelaxinf2 44962* A transitive class that contains ω models the Axiom of Infinity ax-inf2 9653. Lemma II.2.11(7) of [Kunen2] p. 114. Kunen has the additional hypotheses that the Extensionality, Separation, Pairing, and Union axioms are true in 𝑀. This, apparently, is because Kunen's statement of the Axiom of Infinity uses the defined notions and suc, and these axioms guarantee that these notions are well-defined. When we state the axiom using primitives only, the need for these hypotheses disappears.

The antecedent of this theorem is not enough to guarantee that the class models the alternate axiom ax-inf 9650. (Contributed by Eric Schmidt, 19-Oct-2025.)

((Tr 𝑀 ∧ ω ∈ 𝑀) → ∃𝑥𝑀 (∃𝑦𝑀 (𝑦𝑥 ∧ ∀𝑧𝑀 ¬ 𝑧𝑦) ∧ ∀𝑦𝑀 (𝑦𝑥 → ∃𝑧𝑀 (𝑧𝑥 ∧ ∀𝑤𝑀 (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))))
 
Theoremdfac5prim 44963* dfac5 10141 expanded into primitives. (Contributed by Eric Schmidt, 19-Oct-2025.)
(CHOICE ↔ ∀𝑥((∀𝑧(𝑧𝑥 → ∃𝑤 𝑤𝑧) ∧ ∀𝑧𝑤((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦(𝑦𝑧 → ¬ 𝑦𝑤)))) → ∃𝑦𝑧(𝑧𝑥 → ∃𝑤𝑣((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤))))
 
Theoremac8prim 44964* ac8 10504 expanded into primitives. (Contributed by Eric Schmidt, 19-Oct-2025.)
((∀𝑧(𝑧𝑥 → ∃𝑤 𝑤𝑧) ∧ ∀𝑧𝑤((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦(𝑦𝑧 → ¬ 𝑦𝑤)))) → ∃𝑦𝑧(𝑧𝑥 → ∃𝑤𝑣((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤)))
 
Theoremmodelac8prim 44965* If 𝑀 is a transitive class, then the following are equivalent. (1) Every nonempty set 𝑥𝑀 of pairwise disjoint nonempty sets has a choice set in 𝑀. (2) The class 𝑀 models the Axiom of Choice, in the form ac8prim 44964.

Lemma II.2.11(7) of [Kunen2] p. 114. Kunen has the additional hypotheses that the Extensionality, Separation, Pairing, and Union axioms are true in 𝑀. This, apparently, is because Kunen's statement of the Axiom of Choice uses defined notions, including and , and these axioms guarantee that these notions are well-defined. When we state the axiom using primitives only, the need for these hypotheses disappears. (Contributed by Eric Schmidt, 19-Oct-2025.)

(Tr 𝑀 → (∀𝑥𝑀 ((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)) ↔ ∀𝑥𝑀 ((∀𝑧𝑀 (𝑧𝑥 → ∃𝑤𝑀 𝑤𝑧) ∧ ∀𝑧𝑀𝑤𝑀 ((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦𝑀 (𝑦𝑧 → ¬ 𝑦𝑤)))) → ∃𝑦𝑀𝑧𝑀 (𝑧𝑥 → ∃𝑤𝑀𝑣𝑀 ((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤)))))
 
21.42.8  The class of well-founded sets is a model for ZFC
 
Theoremwfaxext 44966* The class of well-founded sets models the Axiom of Extensionality ax-ext 2707. Part of Corollary II.2.5 of [Kunen2] p. 112.

This is the first of a series of theorems showing that all the axioms of ZFC hold in the class of well-founded sets, which we here denote by 𝑊. More precisely, for each axiom of ZFC, we obtain a provable statement if we restrict all quantifiers to 𝑊 (including implicit universal quantifiers on free variables).

None of these proofs use the Axiom of Regularity. In particular, the Axiom of Regularity itself is proved to hold in 𝑊 without using Regularity. Further, the Axiom of Choice is used only in the proof that Choice holds in 𝑊. This has the consequence that any theorem of ZF (possibly proved using Regularity) can be proved, without using Regularity, to hold in 𝑊. This gives us a relative consistency result: If ZF without Regularity is consistent, so is ZF itself. Similarly, if ZFC without Regularity is consistent, so is ZFC itself. These consistency results are metatheorems and are part of Theorem II.2.13 of [Kunen2] p. 114.

(Contributed by Eric Schmidt, 11-Sep-2025.) (Revised by Eric Schmidt, 29-Sep-2025.)

𝑊 = (𝑅1 “ On)       𝑥𝑊𝑦𝑊 (∀𝑧𝑊 (𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
 
Theoremwfaxrep 44967* The class of well-founded sets models the Axiom of Replacement ax-rep 5249. Actually, our statement is stronger, since it is an instance of Replacement only when all quantifiers in 𝑦𝜑 are relativized to 𝑊. Essentially part of Corollary II.2.5 of [Kunen2] p. 112, but note that our Replacement is different from Kunen's. (Contributed by Eric Schmidt, 29-Sep-2025.)
𝑊 = (𝑅1 “ On)       𝑥𝑊 (∀𝑤𝑊𝑦𝑊𝑧𝑊 (∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑊𝑧𝑊 (𝑧𝑦 ↔ ∃𝑤𝑊 (𝑤𝑥 ∧ ∀𝑦𝜑)))
 
Theoremwfaxsep 44968* The class of well-founded sets models the Axiom of Separation ax-sep 5266. Actually, our statement is stronger, since it is an instance of Separation only when all quantifiers in 𝜑 are relativized to 𝑊. Part of Corollary II.2.5 of [Kunen2] p. 112. (Contributed by Eric Schmidt, 29-Sep-2025.)
𝑊 = (𝑅1 “ On)       𝑧𝑊𝑦𝑊𝑥𝑊 (𝑥𝑦 ↔ (𝑥𝑧𝜑))
 
Theoremwfaxnul 44969* The class of well-founded sets models the Null Set Axiom ax-nul 5276. (Contributed by Eric Schmidt, 19-Oct-2025.)
𝑊 = (𝑅1 “ On)       𝑥𝑊𝑦𝑊 ¬ 𝑦𝑥
 
Theoremwfaxpow 44970* The class of well-founded sets models the Axioms of Power Sets. Part of Corollary II.2.9 of [Kunen2] p. 113. (Contributed by Eric Schmidt, 19-Oct-2025.)
𝑊 = (𝑅1 “ On)       𝑥𝑊𝑦𝑊𝑧𝑊 (∀𝑤𝑊 (𝑤𝑧𝑤𝑥) → 𝑧𝑦)
 
Theoremwfaxpr 44971* The class of well-founded sets models the Axiom of Pairing ax-pr 5402. Part of Corollary II.2.5 of [Kunen2] p. 112. (Contributed by Eric Schmidt, 29-Sep-2025.)
𝑊 = (𝑅1 “ On)       𝑥𝑊𝑦𝑊𝑧𝑊𝑤𝑊 ((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑧)
 
Theoremwfaxun 44972* The class of well-founded sets models the Axiom of Union ax-un 7727. Part of Corollary II.2.5 of [Kunen2] p. 112. (Contributed by Eric Schmidt, 19-Oct-2025.)
𝑊 = (𝑅1 “ On)       𝑥𝑊𝑦𝑊𝑧𝑊 (∃𝑤𝑊 (𝑧𝑤𝑤𝑥) → 𝑧𝑦)
 
Theoremwfaxreg 44973* The class of well-founded sets models the Axiom of Regularity ax-reg 9604. Part of Corollary II.2.5 of [Kunen2] p. 112. (Contributed by Eric Schmidt, 19-Oct-2025.)
𝑊 = (𝑅1 “ On)       𝑥𝑊 (∃𝑦𝑊 𝑦𝑥 → ∃𝑦𝑊 (𝑦𝑥 ∧ ∀𝑧𝑊 (𝑧𝑦 → ¬ 𝑧𝑥)))
 
Theoremwfaxinf2 44974* The class of well-founded sets models the Axiom of Infinity ax-inf2 9653. Part of Corollary II.2.12 of [Kunen2] p. 114. (Contributed by Eric Schmidt, 19-Oct-2025.)
𝑊 = (𝑅1 “ On)       𝑥𝑊 (∃𝑦𝑊 (𝑦𝑥 ∧ ∀𝑧𝑊 ¬ 𝑧𝑦) ∧ ∀𝑦𝑊 (𝑦𝑥 → ∃𝑧𝑊 (𝑧𝑥 ∧ ∀𝑤𝑊 (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))))
 
Theoremwfac8prim 44975* The class of well-founded sets 𝑊 models the Axiom of Choice. Since the previous theorems show that all the ZF axioms hold in 𝑊, we may use any statement that ZF proves is equivalent to Choice to prove this. We use ac8prim 44964. Part of Corollary II.2.12 of [Kunen2] p. 114. (Contributed by Eric Schmidt, 19-Oct-2025.)
𝑊 = (𝑅1 “ On)       𝑥𝑊 ((∀𝑧𝑊 (𝑧𝑥 → ∃𝑤𝑊 𝑤𝑧) ∧ ∀𝑧𝑊𝑤𝑊 ((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦𝑊 (𝑦𝑧 → ¬ 𝑦𝑤)))) → ∃𝑦𝑊𝑧𝑊 (𝑧𝑥 → ∃𝑤𝑊𝑣𝑊 ((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤)))
 
21.42.9  Permutation models
 
Theorembrpermmodel 44976 The membership relation in a permutation model. We use a permutation 𝐹 of the universe to define a relation 𝑅 that serves as the membership relation in our model. The conclusion of this theorem is Definition II.9.1 of [Kunen2] p. 148. All the axioms of ZFC except for Regularity hold in permutation models, and Regularity will be false if 𝐹 is chosen appropriately. Thus, permutation models can be used to show that Regularity does not follow from the other axioms (with the usual proviso that the axioms are consistent). (Contributed by Eric Schmidt, 6-Nov-2025.)
𝐹:V–1-1-onto→V    &   𝑅 = (𝐹 ∘ E )    &   𝐴 ∈ V    &   𝐵 ∈ V       (𝐴𝑅𝐵𝐴 ∈ (𝐹𝐵))
 
Theorembrpermmodelcnv 44977 Ordinary membership expressed in terms of the permutation model's membership relation. (Contributed by Eric Schmidt, 6-Nov-2025.)
𝐹:V–1-1-onto→V    &   𝑅 = (𝐹 ∘ E )    &   𝐴 ∈ V    &   𝐵 ∈ V       (𝐴𝑅(𝐹𝐵) ↔ 𝐴𝐵)
 
Theorempermaxext 44978* The Axiom of Extensionality ax-ext 2707 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 6-Nov-2025.)
𝐹:V–1-1-onto→V    &   𝑅 = (𝐹 ∘ E )       (∀𝑧(𝑧𝑅𝑥𝑧𝑅𝑦) → 𝑥 = 𝑦)
 
Theorempermaxrep 44979* The Axiom of Replacement ax-rep 5249 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148.

Note that, to prove that an instance of Replacement holds in the model, 𝜑 would need have all instances of replaced with 𝑅. But this still results in an instance of this theorem, so we do establish that Replacement holds. (Contributed by Eric Schmidt, 6-Nov-2025.)

𝐹:V–1-1-onto→V    &   𝑅 = (𝐹 ∘ E )       (∀𝑤𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑧(𝑧𝑅𝑦 ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑)))
 
Theorempermaxsep 44980* The Axiom of Separation ax-sep 5266 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148.

Note that, to prove that an instance of Separation holds in the model, 𝜑 would need have all instances of replaced with 𝑅. But this still results in an instance of this theorem, so we do establish that Separation holds. (Contributed by Eric Schmidt, 6-Nov-2025.)

𝐹:V–1-1-onto→V    &   𝑅 = (𝐹 ∘ E )       𝑦𝑥(𝑥𝑅𝑦 ↔ (𝑥𝑅𝑧𝜑))
 
Theorempermaxnul 44981* The Null Set Axiom ax-nul 5276 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 6-Nov-2025.)
𝐹:V–1-1-onto→V    &   𝑅 = (𝐹 ∘ E )       𝑥𝑦 ¬ 𝑦𝑅𝑥
 
Theorempermaxpow 44982* The Axiom of Power Sets ax-pow 5335 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 6-Nov-2025.)
𝐹:V–1-1-onto→V    &   𝑅 = (𝐹 ∘ E )       𝑦𝑧(∀𝑤(𝑤𝑅𝑧𝑤𝑅𝑥) → 𝑧𝑅𝑦)
 
Theorempermaxpr 44983* The Axiom of Pairing ax-pr 5402 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 6-Nov-2025.)
𝐹:V–1-1-onto→V    &   𝑅 = (𝐹 ∘ E )       𝑧𝑤((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑅𝑧)
 
Theorempermaxun 44984* The Axiom of Union ax-un 7727 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 6-Nov-2025.)
𝐹:V–1-1-onto→V    &   𝑅 = (𝐹 ∘ E )       𝑦𝑧(∃𝑤(𝑧𝑅𝑤𝑤𝑅𝑥) → 𝑧𝑅𝑦)
 
Theorempermaxinf2lem 44985* Lemma for permaxinf2 44986. (Contributed by Eric Schmidt, 6-Nov-2025.)
𝐹:V–1-1-onto→V    &   𝑅 = (𝐹 ∘ E )    &   𝑍 = (rec((𝑣 ∈ V ↦ (𝐹‘((𝐹𝑣) ∪ {𝑣}))), (𝐹‘∅)) “ ω)       𝑥(∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ∧ ∀𝑦(𝑦𝑅𝑥 → ∃𝑧(𝑧𝑅𝑥 ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦)))))
 
Theorempermaxinf2 44986* The Axiom of Infinity ax-inf2 9653 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 6-Nov-2025.)
𝐹:V–1-1-onto→V    &   𝑅 = (𝐹 ∘ E )       𝑥(∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ∧ ∀𝑦(𝑦𝑅𝑥 → ∃𝑧(𝑧𝑅𝑥 ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦)))))
 
21.43  Mathbox for Glauco Siliprandi
 
21.43.1  Miscellanea
 
Theoremevth2f 44987* A version of evth2 24908 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑥𝐹    &   𝑦𝐹    &   𝑥𝑋    &   𝑦𝑋    &   𝑋 = 𝐽    &   𝐾 = (topGen‘ran (,))    &   (𝜑𝐽 ∈ Comp)    &   (𝜑𝐹 ∈ (𝐽 Cn 𝐾))    &   (𝜑𝑋 ≠ ∅)       (𝜑 → ∃𝑥𝑋𝑦𝑋 (𝐹𝑥) ≤ (𝐹𝑦))
 
Theoremelunif 44988* A version of eluni 4886 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑥𝐴    &   𝑥𝐵       (𝐴 𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
 
Theoremrzalf 44989 A version of rzal 4484 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑥 𝐴 = ∅       (𝐴 = ∅ → ∀𝑥𝐴 𝜑)
 
Theoremfvelrnbf 44990 A version of fvelrnb 6938 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑥𝐴    &   𝑥𝐵    &   𝑥𝐹       (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝐵))
 
Theoremrfcnpre1 44991 If F is a continuous function with respect to the standard topology, then the preimage A of the values greater than a given extended real B is an open set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑥𝐵    &   𝑥𝐹    &   𝑥𝜑    &   𝐾 = (topGen‘ran (,))    &   𝑋 = 𝐽    &   𝐴 = {𝑥𝑋𝐵 < (𝐹𝑥)}    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐹 ∈ (𝐽 Cn 𝐾))       (𝜑𝐴𝐽)
 
Theoremubelsupr 44992* If U belongs to A and U is an upper bound, then U is the sup of A. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
((𝐴 ⊆ ℝ ∧ 𝑈𝐴 ∧ ∀𝑥𝐴 𝑥𝑈) → 𝑈 = sup(𝐴, ℝ, < ))
 
Theoremfsumcnf 44993* A finite sum of functions to complex numbers from a common topological space is continuous, without disjoint var constraint x ph. The class expression for B normally contains free variables k and x to index it. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝐾 = (TopOpen‘ℂfld)    &   (𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))       (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))
 
Theoremmulltgt0 44994 The product of a negative and a positive number is negative. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
(((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 · 𝐵) < 0)
 
Theoremrspcegf 44995 A version of rspcev 3601 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑥𝜓    &   𝑥𝐴    &   𝑥𝐵    &   (𝑥 = 𝐴 → (𝜑𝜓))       ((𝐴𝐵𝜓) → ∃𝑥𝐵 𝜑)
 
Theoremrabexgf 44996 A version of rabexg 5307 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑥𝐴       (𝐴𝑉 → {𝑥𝐴𝜑} ∈ V)
 
Theoremfcnre 44997 A function continuous with respect to the standard topology, is a real mapping. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝐾 = (topGen‘ran (,))    &   𝑇 = 𝐽    &   𝐶 = (𝐽 Cn 𝐾)    &   (𝜑𝐹𝐶)       (𝜑𝐹:𝑇⟶ℝ)
 
Theoremsumsnd 44998* A sum of a singleton is the term. The deduction version of sumsn 15760. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
(𝜑𝑘𝐵)    &   𝑘𝜑    &   ((𝜑𝑘 = 𝑀) → 𝐴 = 𝐵)    &   (𝜑𝑀𝑉)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
 
Theoremevthf 44999* A version of evth 24907 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑥𝐹    &   𝑦𝐹    &   𝑥𝑋    &   𝑦𝑋    &   𝑥𝜑    &   𝑦𝜑    &   𝑋 = 𝐽    &   𝐾 = (topGen‘ran (,))    &   (𝜑𝐽 ∈ Comp)    &   (𝜑𝐹 ∈ (𝐽 Cn 𝐾))    &   (𝜑𝑋 ≠ ∅)       (𝜑 → ∃𝑥𝑋𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥))
 
Theoremcnfex 45000 The class of continuous functions between two topologies is a set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48200 483 48201-48300 484 48301-48400 485 48401-48500 486 48501-48600 487 48601-48700 488 48701-48800 489 48801-48900 490 48901-49000 491 49001-49100 492 49101-49200 493 49201-49300 494 49301-49400 495 49401-49500 496 49501-49600 497 49601-49617
  Copyright terms: Public domain < Previous  Next >