HomeHome Metamath Proof Explorer
Theorem List (p. 450 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 44901-45000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem257prm 44901 257 is a prime number (the fourth Fermat prime). (Contributed by AV, 15-Jun-2021.)
257 ∈ ℙ
 
Theoremfmtno3prm 44902 The 3 rd Fermat number is a prime (fourth Fermat prime). (Contributed by AV, 15-Jun-2021.)
(FermatNo‘3) ∈ ℙ
 
Theoremodz2prm2pw 44903 Any power of two is coprime to any prime not being two. (Contributed by AV, 25-Jul-2021.)
(((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
 
Theoremfmtnoprmfac1lem 44904 Lemma for fmtnoprmfac1 44905: The order of 2 modulo a prime that divides the n-th Fermat number is 2^(n+1). (Contributed by AV, 25-Jul-2021.) (Proof shortened by AV, 18-Mar-2022.)
((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
 
Theoremfmtnoprmfac1 44905* Divisor of Fermat number (special form of Euler's result, see fmtnofac1 44910): Let Fn be a Fermat number. Let p be a prime divisor of Fn. Then p is in the form: k*2^(n+1)+1 where k is a positive integer. (Contributed by AV, 25-Jul-2021.)
((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))
 
Theoremfmtnoprmfac2lem1 44906 Lemma for fmtnoprmfac2 44907. (Contributed by AV, 26-Jul-2021.)
((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1)
 
Theoremfmtnoprmfac2 44907* Divisor of Fermat number (special form of Lucas' result, see fmtnofac2 44909): Let Fn be a Fermat number. Let p be a prime divisor of Fn. Then p is in the form: k*2^(n+2)+1 where k is a positive integer. (Contributed by AV, 26-Jul-2021.)
((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
 
Theoremfmtnofac2lem 44908* Lemma for fmtnofac2 44909 (Induction step). (Contributed by AV, 30-Jul-2021.)
((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ((𝑁 ∈ (ℤ‘2) ∧ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
 
Theoremfmtnofac2 44909* Divisor of Fermat number (Euler's Result refined by François Édouard Anatole Lucas), see fmtnofac1 44910: Let Fn be a Fermat number. Let m be divisor of Fn. Then m is in the form: k*2^(n+2)+1 where k is a nonnegative integer. (Contributed by AV, 30-Jul-2021.)
((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
 
Theoremfmtnofac1 44910* Divisor of Fermat number (Euler's Result), see ProofWiki "Divisor of Fermat Number/Euler's Result", 24-Jul-2021, https://proofwiki.org/wiki/Divisor_of_Fermat_Number/Euler's_Result): "Let Fn be a Fermat number. Let m be divisor of Fn. Then m is in the form: k*2^(n+1)+1 where k is a positive integer." Here, however, k must be a nonnegative integer, because k must be 0 to represent 1 (which is a divisor of Fn ).

Historical Note: In 1747, Leonhard Paul Euler proved that a divisor of a Fermat number Fn is always in the form kx2^(n+1)+1. This was later refined to k*2^(n+2)+1 by François Édouard Anatole Lucas, see fmtnofac2 44909. (Contributed by AV, 30-Jul-2021.)

((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))
 
Theoremfmtno4sqrt 44911 The floor of the square root of the fourth Fermat number is 256. (Contributed by AV, 28-Jul-2021.)
(⌊‘(√‘(FermatNo‘4))) = 256
 
Theoremfmtno4prmfac 44912 If P was a (prime) factor of the fourth Fermat number less than the square root of the fourth Fermat number, it would be either 65 or 129 or 193. (Contributed by AV, 28-Jul-2021.)
((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))
 
Theoremfmtno4prmfac193 44913 If P was a (prime) factor of the fourth Fermat number, it would be 193. (Contributed by AV, 28-Jul-2021.)
((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → 𝑃 = 193)
 
Theoremfmtno4nprmfac193 44914 193 is not a (prime) factor of the fourth Fermat number. (Contributed by AV, 24-Jul-2021.)
¬ 193 ∥ (FermatNo‘4)
 
Theoremfmtno4prm 44915 The 4-th Fermat number (65537) is a prime (the fifth Fermat prime). (Contributed by AV, 28-Jul-2021.)
(FermatNo‘4) ∈ ℙ
 
Theorem65537prm 44916 65537 is a prime number (the fifth Fermat prime). (Contributed by AV, 28-Jul-2021.)
65537 ∈ ℙ
 
Theoremfmtnofz04prm 44917 The first five Fermat numbers are prime, see remark in [ApostolNT] p. 7. (Contributed by AV, 28-Jul-2021.)
(𝑁 ∈ (0...4) → (FermatNo‘𝑁) ∈ ℙ)
 
Theoremfmtnole4prm 44918 The first five Fermat numbers are prime. (Contributed by AV, 28-Jul-2021.)
((𝑁 ∈ ℕ0𝑁 ≤ 4) → (FermatNo‘𝑁) ∈ ℙ)
 
Theoremfmtno5faclem1 44919 Lemma 1 for fmtno5fac 44922. (Contributed by AV, 22-Jul-2021.)
(6700417 · 4) = 26801668
 
Theoremfmtno5faclem2 44920 Lemma 2 for fmtno5fac 44922. (Contributed by AV, 22-Jul-2021.)
(6700417 · 6) = 40202502
 
Theoremfmtno5faclem3 44921 Lemma 3 for fmtno5fac 44922. (Contributed by AV, 22-Jul-2021.)
(402025020 + 26801668) = 428826688
 
Theoremfmtno5fac 44922 The factorisation of the 5 th Fermat number, see remark in [ApostolNT] p. 7. (Contributed by AV, 22-Jul-2021.)
(FermatNo‘5) = (6700417 · 641)
 
Theoremfmtno5nprm 44923 The 5 th Fermat number is a not a prime. (Contributed by AV, 22-Jul-2021.)
(FermatNo‘5) ∉ ℙ
 
Theoremprmdvdsfmtnof1lem1 44924* Lemma 1 for prmdvdsfmtnof1 44927. (Contributed by AV, 3-Aug-2021.)
𝐼 = inf({𝑝 ∈ ℙ ∣ 𝑝𝐹}, ℝ, < )    &   𝐽 = inf({𝑝 ∈ ℙ ∣ 𝑝𝐺}, ℝ, < )       ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺)))
 
Theoremprmdvdsfmtnof1lem2 44925 Lemma 2 for prmdvdsfmtnof1 44927. (Contributed by AV, 3-Aug-2021.)
((𝐹 ∈ ran FermatNo ∧ 𝐺 ∈ ran FermatNo) → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))
 
Theoremprmdvdsfmtnof 44926* The mapping of a Fermat number to its smallest prime factor is a function. (Contributed by AV, 4-Aug-2021.) (Proof shortened by II, 16-Feb-2023.)
𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ))       𝐹:ran FermatNo⟶ℙ
 
Theoremprmdvdsfmtnof1 44927* The mapping of a Fermat number to its smallest prime factor is a one-to-one function. (Contributed by AV, 4-Aug-2021.)
𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ))       𝐹:ran FermatNo–1-1→ℙ
 
Theoremprminf2 44928 The set of prime numbers is infinite. The proof of this variant of prminf 16544 is based on Goldbach's theorem goldbachth 44887 (via prmdvdsfmtnof1 44927 and prmdvdsfmtnof1lem2 44925), see Wikipedia "Fermat number", 4-Aug-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties 44925. (Contributed by AV, 4-Aug-2021.)
ℙ ∉ Fin
 
Theorem2pwp1prm 44929* For ((2↑𝑘) + 1) to be prime, 𝑘 must be a power of 2, see Wikipedia "Fermat number", section "Other theorms about Fermat numbers", https://en.wikipedia.org/wiki/Fermat_number, 5-Aug-2021. (Contributed by AV, 7-Aug-2021.)
((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))
 
Theorem2pwp1prmfmtno 44930* Every prime number of the form ((2↑𝑘) + 1) must be a Fermat number. (Contributed by AV, 7-Aug-2021.)
((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝑃 = (FermatNo‘𝑛))
 
20.41.12.2  Mersenne primes

"In mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a prime number of the form Mn = 2^n-1 for some integer n. They are named after Marin Mersenne ... If n is a composite number then so is 2^n-1. Therefore, an equivalent definition of the Mersenne primes is that they are the prime numbers of the form Mp = 2^p-1 for some prime p.", see Wikipedia "Mersenne prime", 16-Aug-2021, https://en.wikipedia.org/wiki/Mersenne_prime. See also definition in [ApostolNT] p. 4.

This means that if Mn = 2^n-1 is prime, than n must be prime, too, see mersenne 26280. The reverse direction is not generally valid: If p is prime, then Mp = 2^p-1 needs not be prime, e.g. M11 = 2047 = 23 x 89, see m11nprm 44941. This is an example of sgprmdvdsmersenne 44944, stating that if p with p = 3 modulo 4 (here 11) and q=2p+1 (here 23) are prime, then q divides Mp.

"In number theory, a prime number p is a Sophie Germain prime if 2p+1 is also prime. The number 2p+1 associated with a Sophie Germain prime is called a safe prime.", see Wikipedia "Safe and Sophie Germain primes", 21-Aug-2021, https://en.wikipedia.org/wiki/Safe_and_Sophie_Germain_primes 44944. Hence, 11 is a Sophie Germain prime and 2x11+1=23 is its associated safe prime. By sfprmdvdsmersenne 44943, it is shown that if a safe prime q is congruent to 7 modulo 8, then it is a divisor of the Mersenne number with its matching Sophie Germain prime as exponent.

The main result of this section, however, is the formal proof of a theorem of S. Ligh and L. Neal in "A note on Mersenne numbers", see lighneal 44951.

 
Theoremm2prm 44931 The second Mersenne number M2 = 3 is a prime number. (Contributed by AV, 16-Aug-2021.)
((2↑2) − 1) ∈ ℙ
 
Theoremm3prm 44932 The third Mersenne number M3 = 7 is a prime number. (Contributed by AV, 16-Aug-2021.)
((2↑3) − 1) ∈ ℙ
 
Theoremflsqrt 44933 A condition equivalent to the floor of a square root. (Contributed by AV, 17-Aug-2021.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((⌊‘(√‘𝐴)) = 𝐵 ↔ ((𝐵↑2) ≤ 𝐴𝐴 < ((𝐵 + 1)↑2))))
 
Theoremflsqrt5 44934 The floor of the square root of a nonnegative number is 5 iff the number is between 25 and 35. (Contributed by AV, 17-Aug-2021.)
((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) → ((25 ≤ 𝑋𝑋 < 36) ↔ (⌊‘(√‘𝑋)) = 5))
 
Theorem3ndvds4 44935 3 does not divide 4. (Contributed by AV, 18-Aug-2021.)
¬ 3 ∥ 4
 
Theorem139prmALT 44936 139 is a prime number. In contrast to 139prm 16753, the proof of this theorem uses 3dvds2dec 15970 for checking the divisibility by 3. Although the proof using 3dvds2dec 15970 is longer (regarding size: 1849 characters compared with 1809 for 139prm 16753), the number of essential steps is smaller (301 compared with 327 for 139prm 16753). (Contributed by Mario Carneiro, 19-Feb-2014.) (Revised by AV, 18-Aug-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
139 ∈ ℙ
 
Theorem31prm 44937 31 is a prime number. In contrast to 37prm 16750, the proof of this theorem is not based on the "blanket" prmlem2 16749, but on isprm7 16341. Although the checks for non-divisibility by the primes 7 to 23 are not needed, the proof is much longer (regarding size) than the proof of 37prm 16750 (1810 characters compared with 1213 for 37prm 16750). The number of essential steps, however, is much smaller (138 compared with 213 for 37prm 16750). (Contributed by AV, 17-Aug-2021.) (Proof modification is discouraged.)
31 ∈ ℙ
 
Theoremm5prm 44938 The fifth Mersenne number M5 = 31 is a prime number. (Contributed by AV, 17-Aug-2021.)
((2↑5) − 1) ∈ ℙ
 
Theorem127prm 44939 127 is a prime number. (Contributed by AV, 16-Aug-2021.) (Proof shortened by AV, 16-Sep-2021.)
127 ∈ ℙ
 
Theoremm7prm 44940 The seventh Mersenne number M7 = 127 is a prime number. (Contributed by AV, 18-Aug-2021.)
((2↑7) − 1) ∈ ℙ
 
Theoremm11nprm 44941 The eleventh Mersenne number M11 = 2047 is not a prime number. (Contributed by AV, 18-Aug-2021.)
((2↑11) − 1) = (89 · 23)
 
Theoremmod42tp1mod8 44942 If a number is 3 modulo 4, twice the number plus 1 is 7 modulo 8. (Contributed by AV, 19-Aug-2021.)
((𝑁 ∈ ℤ ∧ (𝑁 mod 4) = 3) → (((2 · 𝑁) + 1) mod 8) = 7)
 
Theoremsfprmdvdsmersenne 44943 If 𝑄 is a safe prime (i.e. 𝑄 = ((2 · 𝑃) + 1) for a prime 𝑃) with 𝑄≡7 (mod 8), then 𝑄 divides the 𝑃-th Mersenne number MP. (Contributed by AV, 20-Aug-2021.)
((𝑃 ∈ ℙ ∧ (𝑄 ∈ ℙ ∧ (𝑄 mod 8) = 7 ∧ 𝑄 = ((2 · 𝑃) + 1))) → 𝑄 ∥ ((2↑𝑃) − 1))
 
Theoremsgprmdvdsmersenne 44944 If 𝑃 is a Sophie Germain prime (i.e. 𝑄 = ((2 · 𝑃) + 1) is also prime) with 𝑃≡3 (mod 4), then 𝑄 divides the 𝑃-th Mersenne number MP. (Contributed by AV, 20-Aug-2021.)
(((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 3) ∧ (𝑄 = ((2 · 𝑃) + 1) ∧ 𝑄 ∈ ℙ)) → 𝑄 ∥ ((2↑𝑃) − 1))
 
Theoremlighneallem1 44945 Lemma 1 for lighneal 44951. (Contributed by AV, 11-Aug-2021.)
((𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((2↑𝑁) − 1) ≠ (𝑃𝑀))
 
Theoremlighneallem2 44946 Lemma 2 for lighneal 44951. (Contributed by AV, 13-Aug-2021.)
(((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 2 ∥ 𝑁 ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → 𝑀 = 1)
 
Theoremlighneallem3 44947 Lemma 3 for lighneal 44951. (Contributed by AV, 11-Aug-2021.)
(((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀) ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → 𝑀 = 1)
 
Theoremlighneallem4a 44948 Lemma 1 for lighneallem4 44950. (Contributed by AV, 16-Aug-2021.)
((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3) ∧ 𝑆 = (((𝐴𝑀) + 1) / (𝐴 + 1))) → 2 ≤ 𝑆)
 
Theoremlighneallem4b 44949* Lemma 2 for lighneallem4 44950. (Contributed by AV, 16-Aug-2021.)
((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ (ℤ‘2))
 
Theoremlighneallem4 44950 Lemma 3 for lighneal 44951. (Contributed by AV, 16-Aug-2021.)
(((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀) ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → 𝑀 = 1)
 
Theoremlighneal 44951 If a power of a prime 𝑃 (i.e. 𝑃𝑀) is of the form 2↑𝑁 − 1, then 𝑁 must be prime and 𝑀 must be 1. Generalization of mersenne 26280 (where 𝑀 = 1 is a prerequisite). Theorem of S. Ligh and L. Neal (1974) "A note on Mersenne mumbers", Mathematics Magazine, 47:4, 231-233. (Contributed by AV, 16-Aug-2021.)
(((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → (𝑀 = 1 ∧ 𝑁 ∈ ℙ))
 
20.41.12.3  Proth's theorem
 
Theoremmodexp2m1d 44952 The square of an integer which is -1 modulo a number greater than 1 is 1 modulo the same modulus. (Contributed by AV, 5-Jul-2020.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝐸 ∈ ℝ+)    &   (𝜑 → 1 < 𝐸)    &   (𝜑 → (𝐴 mod 𝐸) = (-1 mod 𝐸))       (𝜑 → ((𝐴↑2) mod 𝐸) = 1)
 
Theoremproththdlem 44953 Lemma for proththd 44954. (Contributed by AV, 4-Jul-2020.)
(𝜑𝑁 ∈ ℕ)    &   (𝜑𝐾 ∈ ℕ)    &   (𝜑𝑃 = ((𝐾 · (2↑𝑁)) + 1))       (𝜑 → (𝑃 ∈ ℕ ∧ 1 < 𝑃 ∧ ((𝑃 − 1) / 2) ∈ ℕ))
 
Theoremproththd 44954* Proth's theorem (1878). If P is a Proth number, i.e. a number of the form k2^n+1 with k less than 2^n, and if there exists an integer x for which x^((P-1)/2) is -1 modulo P, then P is prime. Such a prime is called a Proth prime. Like Pocklington's theorem (see pockthg 16535), Proth's theorem allows for a convenient method for verifying large primes. (Contributed by AV, 5-Jul-2020.)
(𝜑𝑁 ∈ ℕ)    &   (𝜑𝐾 ∈ ℕ)    &   (𝜑𝑃 = ((𝐾 · (2↑𝑁)) + 1))    &   (𝜑𝐾 < (2↑𝑁))    &   (𝜑 → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))       (𝜑𝑃 ∈ ℙ)
 
Theorem5tcu2e40 44955 5 times the cube of 2 is 40. (Contributed by AV, 4-Jul-2020.)
(5 · (2↑3)) = 40
 
Theorem3exp4mod41 44956 3 to the fourth power is -1 modulo 41. (Contributed by AV, 5-Jul-2020.)
((3↑4) mod 41) = (-1 mod 41)
 
Theorem41prothprmlem1 44957 Lemma 1 for 41prothprm 44959. (Contributed by AV, 4-Jul-2020.)
𝑃 = 41       ((𝑃 − 1) / 2) = 20
 
Theorem41prothprmlem2 44958 Lemma 2 for 41prothprm 44959. (Contributed by AV, 5-Jul-2020.)
𝑃 = 41       ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)
 
Theorem41prothprm 44959 41 is a Proth prime. (Contributed by AV, 5-Jul-2020.)
𝑃 = 41       (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ)
 
20.41.12.4  Solutions of quadratic equations
 
Theoremquad1 44960* A condition for a quadratic equation with complex coefficients to have (exactly) one complex solution. (Contributed by AV, 23-Jan-2023.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))       (𝜑 → (∃!𝑥 ∈ ℂ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0))
 
Theoremrequad01 44961* A condition for a quadratic equation with real coefficients to have (at least) one real solution. (Contributed by AV, 23-Jan-2023.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 ≠ 0)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))       (𝜑 → (∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 0 ≤ 𝐷))
 
Theoremrequad1 44962* A condition for a quadratic equation with real coefficients to have (exactly) one real solution. (Contributed by AV, 26-Jan-2023.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 ≠ 0)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))       (𝜑 → (∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0))
 
Theoremrequad2 44963* A condition for a quadratic equation with real coefficients to have (exactly) two different real solutions. (Contributed by AV, 28-Jan-2023.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 ≠ 0)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))       (𝜑 → (∃!𝑝 ∈ 𝒫 ℝ((♯‘𝑝) = 2 ∧ ∀𝑥𝑝 ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0) ↔ 0 < 𝐷))
 
20.41.13  Even and odd numbers

Even and odd numbers can be characterized in many different ways. In the following, the definition of even and odd numbers is based on the fact that dividing an even number (resp. an odd number increased by 1) by 2 is an integer, see df-even 44966 and df-odd 44967. Alternate definitions resp. characterizations are provided in dfeven2 44989, dfeven3 44998, dfeven4 44978 and in dfodd2 44976, dfodd3 44990, dfodd4 44999, dfodd5 45000, dfodd6 44977. Each characterization can be useful (and used) in an appropriate context, e.g. dfodd6 44977 in opoeALTV 45023 and dfodd3 44990 in oddprmALTV 45027. Having a fixed definition for even and odd numbers, and alternate characterizations as theorems, advanced theorems about even and/or odd numbers can be expressed more explicitly, and the appropriate characterization can be chosen for their proof, which may become clearer and sometimes also shorter (see, for example, divgcdoddALTV 45022 and divgcdodd 16343).

 
20.41.13.1  Definitions and basic properties
 
Syntaxceven 44964 Extend the definition of a class to include the set of even numbers.
class Even
 
Syntaxcodd 44965 Extend the definition of a class to include the set of odd numbers.
class Odd
 
Definitiondf-even 44966 Define the set of even numbers. (Contributed by AV, 14-Jun-2020.)
Even = {𝑧 ∈ ℤ ∣ (𝑧 / 2) ∈ ℤ}
 
Definitiondf-odd 44967 Define the set of odd numbers. (Contributed by AV, 14-Jun-2020.)
Odd = {𝑧 ∈ ℤ ∣ ((𝑧 + 1) / 2) ∈ ℤ}
 
Theoremiseven 44968 The predicate "is an even number". An even number is an integer which is divisible by 2, i.e. the result of dividing the even integer by 2 is still an integer. (Contributed by AV, 14-Jun-2020.)
(𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ))
 
Theoremisodd 44969 The predicate "is an odd number". An odd number is an integer which is not divisible by 2, i.e. the result of dividing the odd integer increased by 1 and then divided by 2 is still an integer. (Contributed by AV, 14-Jun-2020.)
(𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ))
 
Theoremevenz 44970 An even number is an integer. (Contributed by AV, 14-Jun-2020.)
(𝑍 ∈ Even → 𝑍 ∈ ℤ)
 
Theoremoddz 44971 An odd number is an integer. (Contributed by AV, 14-Jun-2020.)
(𝑍 ∈ Odd → 𝑍 ∈ ℤ)
 
Theoremevendiv2z 44972 The result of dividing an even number by 2 is an integer. (Contributed by AV, 15-Jun-2020.)
(𝑍 ∈ Even → (𝑍 / 2) ∈ ℤ)
 
Theoremoddp1div2z 44973 The result of dividing an odd number increased by 1 and then divided by 2 is an integer. (Contributed by AV, 15-Jun-2020.)
(𝑍 ∈ Odd → ((𝑍 + 1) / 2) ∈ ℤ)
 
Theoremoddm1div2z 44974 The result of dividing an odd number decreased by 1 and then divided by 2 is an integer. (Contributed by AV, 15-Jun-2020.)
(𝑍 ∈ Odd → ((𝑍 − 1) / 2) ∈ ℤ)
 
Theoremisodd2 44975 The predicate "is an odd number". An odd number is an integer which is not divisible by 2, i.e. the result of dividing the odd number decreased by 1 and then divided by 2 is still an integer. (Contributed by AV, 15-Jun-2020.)
(𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 − 1) / 2) ∈ ℤ))
 
Theoremdfodd2 44976 Alternate definition for odd numbers. (Contributed by AV, 15-Jun-2020.)
Odd = {𝑧 ∈ ℤ ∣ ((𝑧 − 1) / 2) ∈ ℤ}
 
Theoremdfodd6 44977* Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020.)
Odd = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1)}
 
Theoremdfeven4 44978* Alternate definition for even numbers. (Contributed by AV, 18-Jun-2020.)
Even = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖)}
 
Theoremevenm1odd 44979 The predecessor of an even number is odd. (Contributed by AV, 16-Jun-2020.)
(𝑍 ∈ Even → (𝑍 − 1) ∈ Odd )
 
Theoremevenp1odd 44980 The successor of an even number is odd. (Contributed by AV, 16-Jun-2020.)
(𝑍 ∈ Even → (𝑍 + 1) ∈ Odd )
 
Theoremoddp1eveni 44981 The successor of an odd number is even. (Contributed by AV, 16-Jun-2020.)
(𝑍 ∈ Odd → (𝑍 + 1) ∈ Even )
 
Theoremoddm1eveni 44982 The predecessor of an odd number is even. (Contributed by AV, 6-Jul-2020.)
(𝑍 ∈ Odd → (𝑍 − 1) ∈ Even )
 
Theoremevennodd 44983 An even number is not an odd number. (Contributed by AV, 16-Jun-2020.)
(𝑍 ∈ Even → ¬ 𝑍 ∈ Odd )
 
Theoremoddneven 44984 An odd number is not an even number. (Contributed by AV, 16-Jun-2020.)
(𝑍 ∈ Odd → ¬ 𝑍 ∈ Even )
 
Theoremenege 44985 The negative of an even number is even. (Contributed by AV, 20-Jun-2020.)
(𝐴 ∈ Even → -𝐴 ∈ Even )
 
Theoremonego 44986 The negative of an odd number is odd. (Contributed by AV, 20-Jun-2020.)
(𝐴 ∈ Odd → -𝐴 ∈ Odd )
 
Theoremm1expevenALTV 44987 Exponentiation of -1 by an even power. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Revised by AV, 6-Jul-2020.)
(𝑁 ∈ Even → (-1↑𝑁) = 1)
 
Theoremm1expoddALTV 44988 Exponentiation of -1 by an odd power. (Contributed by AV, 6-Jul-2020.)
(𝑁 ∈ Odd → (-1↑𝑁) = -1)
 
20.41.13.2  Alternate definitions using the "divides" relation
 
Theoremdfeven2 44989 Alternate definition for even numbers. (Contributed by AV, 18-Jun-2020.)
Even = {𝑧 ∈ ℤ ∣ 2 ∥ 𝑧}
 
Theoremdfodd3 44990 Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020.)
Odd = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
 
Theoremiseven2 44991 The predicate "is an even number". An even number is an integer which is divisible by 2. (Contributed by AV, 18-Jun-2020.)
(𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ 2 ∥ 𝑍))
 
Theoremisodd3 44992 The predicate "is an odd number". An odd number is an integer which is not divisible by 2. (Contributed by AV, 18-Jun-2020.)
(𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ¬ 2 ∥ 𝑍))
 
Theorem2dvdseven 44993 2 divides an even number. (Contributed by AV, 18-Jun-2020.)
(𝑍 ∈ Even → 2 ∥ 𝑍)
 
Theoremm2even 44994 A multiple of 2 is an even number. (Contributed by AV, 5-Jun-2023.)
(𝑍 ∈ ℤ → (2 · 𝑍) ∈ Even )
 
Theorem2ndvdsodd 44995 2 does not divide an odd number. (Contributed by AV, 18-Jun-2020.)
(𝑍 ∈ Odd → ¬ 2 ∥ 𝑍)
 
Theorem2dvdsoddp1 44996 2 divides an odd number increased by 1. (Contributed by AV, 18-Jun-2020.)
(𝑍 ∈ Odd → 2 ∥ (𝑍 + 1))
 
Theorem2dvdsoddm1 44997 2 divides an odd number decreased by 1. (Contributed by AV, 18-Jun-2020.)
(𝑍 ∈ Odd → 2 ∥ (𝑍 − 1))
 
20.41.13.3  Alternate definitions using the "modulo" operation
 
Theoremdfeven3 44998 Alternate definition for even numbers. (Contributed by AV, 18-Jun-2020.)
Even = {𝑧 ∈ ℤ ∣ (𝑧 mod 2) = 0}
 
Theoremdfodd4 44999 Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020.)
Odd = {𝑧 ∈ ℤ ∣ (𝑧 mod 2) = 1}
 
Theoremdfodd5 45000 Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020.)
Odd = {𝑧 ∈ ℤ ∣ (𝑧 mod 2) ≠ 0}
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >