HomeHome Metamath Proof Explorer
Theorem List (p. 450 of 498)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30854)
  Hilbert Space Explorer  Hilbert Space Explorer
(30855-32377)
  Users' Mathboxes  Users' Mathboxes
(32378-49798)
 

Theorem List for Metamath Proof Explorer - 44901-45000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
TheoremhbalgVD 44901 Virtual deduction proof of hbalg 44552. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbalg 44552 is hbalgVD 44901 without virtual deductions and was automatically derived from hbalgVD 44901. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦(𝜑 → ∀𝑥𝜑)   )
2:1: (   𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∀𝑦𝜑 → ∀𝑦𝑥𝜑)   )
3:: (∀𝑦𝑥𝜑 → ∀𝑥𝑦𝜑)
4:2,3: (   𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∀𝑦𝜑 → ∀𝑥𝑦𝜑)   )
5:: (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦𝑦( 𝜑 → ∀𝑥𝜑))
6:5,4: (   𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦(∀ 𝑦𝜑 → ∀𝑥𝑦𝜑)   )
qed:6: (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦 𝜑 → ∀𝑥𝑦𝜑))
(∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦𝜑 → ∀𝑥𝑦𝜑))
 
TheoremhbexgVD 44902 Virtual deduction proof of hbexg 44553. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbexg 44553 is hbexgVD 44902 without virtual deductions and was automatically derived from hbexgVD 44902. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 𝑦(𝜑 → ∀𝑥𝜑)   )
2:1: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦 𝑥(𝜑 → ∀𝑥𝜑)   )
3:2: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 (𝜑 → ∀𝑥𝜑)   )
4:3: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 𝜑 → ∀𝑥¬ 𝜑)   )
5:: (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) ↔ ∀𝑦 𝑥(𝜑 → ∀𝑥𝜑))
6:: (∀𝑦𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑦 𝑦𝑥(𝜑 → ∀𝑥𝜑))
7:5: (∀𝑦𝑥𝑦(𝜑 → ∀𝑥𝜑) ↔ 𝑦𝑦𝑥(𝜑 → ∀𝑥𝜑))
8:5,6,7: (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦 𝑥𝑦(𝜑 → ∀𝑥𝜑))
9:8,4: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦 𝑥𝜑 → ∀𝑥¬ 𝜑)   )
10:9: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 𝑦𝜑 → ∀𝑥¬ 𝜑)   )
11:10: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦 𝜑 → ∀𝑥¬ 𝜑)   )
12:11: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦 (∀𝑦¬ 𝜑 → ∀𝑥𝑦¬ 𝜑)   )
13:12: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∀ 𝑦¬ 𝜑 → ∀𝑥𝑦¬ 𝜑)   )
14:: (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥 𝑥𝑦(𝜑 → ∀𝑥𝜑))
15:13,14: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 (∀𝑦¬ 𝜑 → ∀𝑥𝑦¬ 𝜑)   )
16:15: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 (¬ ∀𝑦¬ 𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑)   )
17:16: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶    𝑦¬ 𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑)   )
18:: (∃𝑦𝜑 ↔ ¬ ∀𝑦¬ 𝜑)
19:17,18: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∃ 𝑦𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑)   )
20:18: (∀𝑥𝑦𝜑 ↔ ∀𝑥¬ ∀𝑦¬ 𝜑)
21:19,20: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∃ 𝑦𝜑 → ∀𝑥𝑦𝜑)   )
22:8,21: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦 (∃𝑦𝜑 → ∀𝑥𝑦𝜑)   )
23:14,22: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 𝑦(∃𝑦𝜑 → ∀𝑥𝑦𝜑)   )
qed:23: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 𝑦(∃𝑦𝜑 → ∀𝑥𝑦𝜑)   )
(∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥𝑦(∃𝑦𝜑 → ∀𝑥𝑦𝜑))
 
Theoremax6e2eqVD 44903* The following User's Proof is a Virtual Deduction proof (see wvd1 44566) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. ax6e2eq 44554 is ax6e2eqVD 44903 without virtual deductions and was automatically derived from ax6e2eqVD 44903. (Contributed by Alan Sare, 25-Mar-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   𝑥𝑥 = 𝑦   ▶   𝑥𝑥 = 𝑦   )
2:: (   𝑥𝑥 = 𝑦   ,   𝑥 = 𝑢   ▶   𝑥 = 𝑢   )
3:1: (   𝑥𝑥 = 𝑦   ▶   𝑥 = 𝑦   )
4:2,3: (   𝑥𝑥 = 𝑦   ,   𝑥 = 𝑢   ▶   𝑦 = 𝑢   )
5:2,4: (   𝑥𝑥 = 𝑦   ,   𝑥 = 𝑢   ▶   (𝑥 = 𝑢𝑦 = 𝑢)   )
6:5: (   𝑥𝑥 = 𝑦   ▶   (𝑥 = 𝑢 → (𝑥 = 𝑢 𝑦 = 𝑢))   )
7:6: (∀𝑥𝑥 = 𝑦 → (𝑥 = 𝑢 → (𝑥 = 𝑢𝑦 = 𝑢)))
8:7: (∀𝑥𝑥𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑢 → ( 𝑥 = 𝑢𝑦 = 𝑢)))
9:: (∀𝑥𝑥 = 𝑦 ↔ ∀𝑥𝑥𝑥 = 𝑦)
10:8,9: (∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑢 → (𝑥 = 𝑢 𝑦 = 𝑢)))
11:1,10: (   𝑥𝑥 = 𝑦   ▶   𝑥(𝑥 = 𝑢 → (𝑥 = 𝑢𝑦 = 𝑢))   )
12:11: (   𝑥𝑥 = 𝑦   ▶   (∃𝑥𝑥 = 𝑢 → ∃𝑥 (𝑥 = 𝑢𝑦 = 𝑢))   )
13:: 𝑥𝑥 = 𝑢
14:13,12: (   𝑥𝑥 = 𝑦   ▶   𝑥(𝑥 = 𝑢𝑦 = 𝑢 )   )
140:14: (∀𝑥𝑥 = 𝑦 → ∃𝑥(𝑥 = 𝑢𝑦 = 𝑢) )
141:140: (∀𝑥𝑥 = 𝑦 → ∀𝑥𝑥(𝑥 = 𝑢𝑦 = 𝑢))
15:1,141: (   𝑥𝑥 = 𝑦   ▶   𝑥𝑥(𝑥 = 𝑢 𝑦 = 𝑢)   )
16:1,15: (   𝑥𝑥 = 𝑦   ▶   𝑦𝑥(𝑥 = 𝑢 𝑦 = 𝑢)   )
17:16: (   𝑥𝑥 = 𝑦   ▶   𝑦𝑥(𝑥 = 𝑢 𝑦 = 𝑢)   )
18:17: (   𝑥𝑥 = 𝑦   ▶   𝑥𝑦(𝑥 = 𝑢 𝑦 = 𝑢)   )
19:: (   𝑢 = 𝑣   ▶   𝑢 = 𝑣   )
20:: (   𝑢 = 𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑢)   ▶   (𝑥 = 𝑢𝑦 = 𝑢)   )
21:20: (   𝑢 = 𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑢)   ▶   𝑦 = 𝑢    )
22:19,21: (   𝑢 = 𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑢)   ▶   𝑦 = 𝑣    )
23:20: (   𝑢 = 𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑢)   ▶   𝑥 = 𝑢    )
24:22,23: (   𝑢 = 𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑢)   ▶   (𝑥 = 𝑢𝑦 = 𝑣)   )
25:24: (   𝑢 = 𝑣   ▶   ((𝑥 = 𝑢𝑦 = 𝑢) → ( 𝑥 = 𝑢𝑦 = 𝑣))   )
26:25: (   𝑢 = 𝑣   ▶   𝑦((𝑥 = 𝑢𝑦 = 𝑢) → (𝑥 = 𝑢𝑦 = 𝑣))   )
27:26: (   𝑢 = 𝑣   ▶   (∃𝑦(𝑥 = 𝑢𝑦 = 𝑢) → ∃𝑦(𝑥 = 𝑢𝑦 = 𝑣))   )
28:27: (   𝑢 = 𝑣   ▶   𝑥(∃𝑦(𝑥 = 𝑢𝑦 = 𝑢) → ∃𝑦(𝑥 = 𝑢𝑦 = 𝑣))   )
29:28: (   𝑢 = 𝑣   ▶   (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑢) → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))   )
30:29: (𝑢 = 𝑣 → (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑢 ) → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣)))
31:18,30: (   𝑥𝑥 = 𝑦   ▶   (𝑢 = 𝑣 → ∃𝑥𝑦 (𝑥 = 𝑢𝑦 = 𝑣))   )
qed:31: (∀𝑥𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥𝑦( 𝑥 = 𝑢𝑦 = 𝑣)))
(∀𝑥 𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣)))
 
Theoremax6e2ndVD 44904* The following User's Proof is a Virtual Deduction proof (see wvd1 44566) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. ax6e2nd 44555 is ax6e2ndVD 44904 without virtual deductions and was automatically derived from ax6e2ndVD 44904. (Contributed by Alan Sare, 25-Mar-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: 𝑦𝑦 = 𝑣
2:: 𝑢 ∈ V
3:1,2: (𝑢 ∈ V ∧ ∃𝑦𝑦 = 𝑣)
4:3: 𝑦(𝑢 ∈ V ∧ 𝑦 = 𝑣)
5:: (𝑢 ∈ V ↔ ∃𝑥𝑥 = 𝑢)
6:5: ((𝑢 ∈ V ∧ 𝑦 = 𝑣) ↔ (∃𝑥𝑥 = 𝑢𝑦 = 𝑣))
7:6: (∃𝑦(𝑢 ∈ V ∧ 𝑦 = 𝑣) ↔ ∃𝑦 (∃𝑥𝑥 = 𝑢𝑦 = 𝑣))
8:4,7: 𝑦(∃𝑥𝑥 = 𝑢𝑦 = 𝑣)
9:: (𝑧 = 𝑣 → ∀𝑥𝑧 = 𝑣)
10:: (𝑦 = 𝑣 → ∀𝑧𝑦 = 𝑣)
11:: (   𝑧 = 𝑦   ▶   𝑧 = 𝑦   )
12:11: (   𝑧 = 𝑦   ▶   (𝑧 = 𝑣𝑦 = 𝑣)   )
120:11: (𝑧 = 𝑦 → (𝑧 = 𝑣𝑦 = 𝑣))
13:9,10,120: (¬ ∀𝑥𝑥 = 𝑦 → (𝑦 = 𝑣 → ∀𝑥𝑦 = 𝑣))
14:: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   ¬ ∀𝑥𝑥 = 𝑦   )
15:14,13: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   (𝑦 = 𝑣 → ∀𝑥 𝑦 = 𝑣)   )
16:15: (¬ ∀𝑥𝑥 = 𝑦 → (𝑦 = 𝑣 → ∀𝑥𝑦 = 𝑣))
17:16: (∀𝑥¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑦 = 𝑣 → ∀𝑥𝑦 = 𝑣))
18:: (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥¬ ∀𝑥𝑥 = 𝑦 )
19:17,18: (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑦 = 𝑣 → ∀ 𝑥𝑦 = 𝑣))
20:14,19: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   𝑥(𝑦 = 𝑣 𝑥𝑦 = 𝑣)   )
21:20: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   ((∃𝑥𝑥 = 𝑢 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢𝑦 = 𝑣))   )
22:21: (¬ ∀𝑥𝑥 = 𝑦 → ((∃𝑥𝑥 = 𝑢 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢𝑦 = 𝑣)))
23:22: (∀𝑦¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦((∃𝑥 𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢𝑦 = 𝑣)))
24:: (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦¬ ∀𝑥𝑥 = 𝑦 )
25:23,24: (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦((∃𝑥𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢𝑦 = 𝑣)))
26:14,25: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   𝑦((∃𝑥𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢𝑦 = 𝑣))   )
27:26: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   (∃𝑦(∃𝑥𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑦𝑥(𝑥 = 𝑢𝑦 = 𝑣))   )
28:8,27: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   𝑦𝑥(𝑥 = 𝑢𝑦 = 𝑣)   )
29:28: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣)   )
qed:29: (¬ ∀𝑥𝑥 = 𝑦 → ∃𝑥𝑦(𝑥 = 𝑢 𝑦 = 𝑣))
(¬ ∀𝑥 𝑥 = 𝑦 → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
 
Theoremax6e2ndeqVD 44905* The following User's Proof is a Virtual Deduction proof (see wvd1 44566) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. ax6e2eq 44554 is ax6e2ndeqVD 44905 without virtual deductions and was automatically derived from ax6e2ndeqVD 44905. (Contributed by Alan Sare, 25-Mar-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   𝑢𝑣   ▶   𝑢𝑣   )
2:: (   𝑢𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑣)   ▶   ( 𝑥 = 𝑢𝑦 = 𝑣)   )
3:2: (   𝑢𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑣)   ▶   𝑥 = 𝑢   )
4:1,3: (   𝑢𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑣)   ▶   𝑥 𝑣   )
5:2: (   𝑢𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑣)   ▶   𝑦 = 𝑣   )
6:4,5: (   𝑢𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑣)   ▶   𝑥 𝑦   )
7:: (∀𝑥𝑥 = 𝑦𝑥 = 𝑦)
8:7: 𝑥 = 𝑦 → ¬ ∀𝑥𝑥 = 𝑦)
9:: 𝑥 = 𝑦𝑥𝑦)
10:8,9: (𝑥𝑦 → ¬ ∀𝑥𝑥 = 𝑦)
11:6,10: (   𝑢𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑣)   ▶    ¬ ∀𝑥𝑥 = 𝑦   )
12:11: (   𝑢𝑣   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦)   )
13:12: (   𝑢𝑣   ▶   𝑥((𝑥 = 𝑢𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦)   )
14:13: (   𝑢𝑣   ▶   (∃𝑥(𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑥¬ ∀𝑥𝑥 = 𝑦)   )
15:: (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥¬ ∀𝑥𝑥 = 𝑦 )
19:15: (∃𝑥¬ ∀𝑥𝑥 = 𝑦 ↔ ¬ ∀𝑥𝑥 = 𝑦)
20:14,19: (   𝑢𝑣   ▶   (∃𝑥(𝑥 = 𝑢𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦)   )
21:20: (   𝑢𝑣   ▶   𝑦(∃𝑥(𝑥 = 𝑢 𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦)   )
22:21: (   𝑢𝑣   ▶   (∃𝑦𝑥(𝑥 = 𝑢 𝑦 = 𝑣) → ∃𝑦¬ ∀𝑥𝑥 = 𝑦)   )
23:: (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ↔ ∃ 𝑦𝑥(𝑥 = 𝑢𝑦 = 𝑣))
24:22,23: (   𝑢𝑣   ▶   (∃𝑥𝑦(𝑥 = 𝑢 𝑦 = 𝑣) → ∃𝑦¬ ∀𝑥𝑥 = 𝑦)   )
25:: (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦¬ ∀𝑥𝑥 = 𝑦 )
26:25: (∃𝑦¬ ∀𝑥𝑥 = 𝑦 → ∃𝑦𝑦¬ 𝑥𝑥 = 𝑦)
260:: (∀𝑦¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦𝑦¬ 𝑥𝑥 = 𝑦)
27:260: (∃𝑦𝑦¬ ∀𝑥𝑥 = 𝑦 ↔ ∀𝑦¬ 𝑥𝑥 = 𝑦)
270:26,27: (∃𝑦¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦¬ ∀𝑥 𝑥 = 𝑦)
28:: (∀𝑦¬ ∀𝑥𝑥 = 𝑦 → ¬ ∀𝑥𝑥 = 𝑦 )
29:270,28: (∃𝑦¬ ∀𝑥𝑥 = 𝑦 → ¬ ∀𝑥𝑥 = 𝑦 )
30:24,29: (   𝑢𝑣   ▶   (∃𝑥𝑦(𝑥 = 𝑢 𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦)   )
31:30: (   𝑢𝑣   ▶   (∃𝑥𝑦(𝑥 = 𝑢 𝑦 = 𝑣) → (¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣))   )
32:31: (𝑢𝑣 → (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → (¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣)))
33:: (   𝑢 = 𝑣   ▶   𝑢 = 𝑣   )
34:33: (   𝑢 = 𝑣   ▶   (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → 𝑢 = 𝑣)   )
35:34: (   𝑢 = 𝑣   ▶   (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → (¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣))   )
36:35: (𝑢 = 𝑣 → (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → (¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣)))
37:: (𝑢 = 𝑣𝑢𝑣)
38:32,36,37: (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → ( ¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣))
39:: (∀𝑥𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥𝑦 (𝑥 = 𝑢𝑦 = 𝑣)))
40:: (¬ ∀𝑥𝑥 = 𝑦 → ∃𝑥𝑦(𝑥 = 𝑢 𝑦 = 𝑣))
41:40: (¬ ∀𝑥𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥 𝑦(𝑥 = 𝑢𝑦 = 𝑣)))
42:: (∀𝑥𝑥 = 𝑦 ∨ ¬ ∀𝑥𝑥 = 𝑦)
43:39,41,42: (𝑢 = 𝑣 → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣 ))
44:40,43: ((¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣) → ∃𝑥 𝑦(𝑥 = 𝑢𝑦 = 𝑣))
qed:38,44: ((¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣) ↔ ∃𝑥 𝑦(𝑥 = 𝑢𝑦 = 𝑣))
((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) ↔ ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
 
Theorem2sb5ndVD 44906* The following User's Proof is a Virtual Deduction proof (see wvd1 44566) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. 2sb5nd 44557 is 2sb5ndVD 44906 without virtual deductions and was automatically derived from 2sb5ndVD 44906. (Contributed by Alan Sare, 30-Apr-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
2:1: (∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
3:: ([𝑣 / 𝑦]𝜑 → ∀𝑦[𝑣 / 𝑦]𝜑)
4:3: [𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 → ∀𝑦[𝑣 / 𝑦]𝜑)
5:4: ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → [𝑢 / 𝑥] 𝑦[𝑣 / 𝑦]𝜑)
6:: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   ¬ ∀𝑥𝑥 = 𝑦   )
7:: (∀𝑦𝑦 = 𝑥 → ∀𝑥𝑥 = 𝑦)
8:7: (¬ ∀𝑥𝑥 = 𝑦 → ¬ ∀𝑦𝑦 = 𝑥)
9:6,8: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   ¬ ∀𝑦𝑦 = 𝑥   )
10:9: ([𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑 ↔ ∀ 𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
11:5,10: ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
12:11: (¬ ∀𝑥𝑥 = 𝑦 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
13:: ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑥[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
14:: (   𝑥𝑥 = 𝑦   ▶   𝑥𝑥 = 𝑦   )
15:14: (   𝑥𝑥 = 𝑦   ▶   (∀𝑥[𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   )
16:13,15: (   𝑥𝑥 = 𝑦   ▶   ([𝑢 / 𝑥][𝑣 / 𝑦 ]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   )
17:16: (∀𝑥𝑥 = 𝑦 → ([𝑢 / 𝑥][𝑣 / 𝑦] 𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
19:12,17: ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
20:19: (∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
21:2,20: (∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ↔ (∃𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
22:21: (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ↔ ∃𝑥(∃𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
23:13: (∃𝑥(∃𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [ 𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
24:22,23: ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [ 𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
240:24: ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ ( 𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
241:: ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ ( 𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
242:241,240: ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [ 𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
243:: ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → ( [𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))) ↔ ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))))
25:242,243: (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → ([ 𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
26:: ((¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣) ↔ ∃𝑥 𝑦(𝑥 = 𝑢𝑦 = 𝑣))
qed:25,26: ((¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
 
Theorem2uasbanhVD 44907* The following User's Proof is a Virtual Deduction proof (see wvd1 44566) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. 2uasbanh 44558 is 2uasbanhVD 44907 without virtual deductions and was automatically derived from 2uasbanhVD 44907. (Contributed by Alan Sare, 31-May-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
h1:: (𝜒 ↔ (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)))
100:1: (𝜒 → (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)))
2:100: (   𝜒   ▶   (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓))   )
3:2: (   𝜒   ▶   𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   )
4:3: (   𝜒   ▶   𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣 )   )
5:4: (   𝜒   ▶   (¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣)    )
6:5: (   𝜒   ▶   ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))   )
7:3,6: (   𝜒   ▶   [𝑢 / 𝑥][𝑣 / 𝑦]𝜑   )
8:2: (   𝜒   ▶   𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)   )
9:5: (   𝜒   ▶   ([𝑢 / 𝑥][𝑣 / 𝑦]𝜓 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓))   )
10:8,9: (   𝜒   ▶   [𝑢 / 𝑥][𝑣 / 𝑦]𝜓   )
101:: ([𝑣 / 𝑦](𝜑𝜓) ↔ ([𝑣 / 𝑦]𝜑 ∧ [𝑣 / 𝑦]𝜓))
102:101: ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑𝜓) ↔ [𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 ∧ [𝑣 / 𝑦]𝜓))
103:: ([𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 ∧ [𝑣 / 𝑦 ]𝜓) ↔ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜓))
104:102,103: ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑𝜓) ↔ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜓))
11:7,10,104: (   𝜒   ▶   [𝑢 / 𝑥][𝑣 / 𝑦](𝜑 𝜓)   )
110:5: (   𝜒   ▶   ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑 𝜓) ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓)))   )
12:11,110: (   𝜒   ▶   𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓))   )
120:12: (𝜒 → ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣 ) ∧ (𝜑𝜓)))
13:1,120: ((∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)) → 𝑥𝑦((𝑥 = 𝑢 𝑦 = 𝑣) ∧ (𝜑𝜓)))
14:: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓 ))   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓))   )
15:14: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓 ))   ▶   (𝑥 = 𝑢𝑦 = 𝑣)   )
16:14: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓 ))   ▶   (𝜑𝜓)   )
17:16: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓 ))   ▶   𝜑   )
18:15,17: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓 ))   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   )
19:18: (((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓 )) → ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
20:19: (∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑 𝜓)) → ∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
21:20: (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ ( 𝜑𝜓)) → ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
22:16: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓 ))   ▶   𝜓   )
23:15,22: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓 ))   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)   )
24:23: (((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓 )) → ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓))
25:24: (∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑 𝜓)) → ∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓))
26:25: (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ ( 𝜑𝜓)) → ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓))
27:21,26: (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ ( 𝜑𝜓)) → (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ 𝑥𝑦( (𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)))
qed:13,27: (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ ( 𝜑𝜓)) ↔ (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ 𝑥𝑦( (𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)))
(𝜒 ↔ (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)))       (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓)) ↔ (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)))
 
Theoreme2ebindVD 44908 The following User's Proof is a Virtual Deduction proof (see wvd1 44566) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. e2ebind 44560 is e2ebindVD 44908 without virtual deductions and was automatically derived from e2ebindVD 44908.
1:: (𝜑𝜑)
2:1: (∀𝑦𝑦 = 𝑥 → (𝜑𝜑))
3:2: (∀𝑦𝑦 = 𝑥 → (∃𝑦𝜑 ↔ ∃𝑥𝜑 ))
4:: (   𝑦𝑦 = 𝑥   ▶   𝑦𝑦 = 𝑥   )
5:3,4: (   𝑦𝑦 = 𝑥   ▶   (∃𝑦𝜑 ↔ ∃𝑥 𝜑)   )
6:: (∀𝑦𝑦 = 𝑥 → ∀𝑦𝑦𝑦 = 𝑥)
7:5,6: (   𝑦𝑦 = 𝑥   ▶   𝑦(∃𝑦𝜑 𝑥𝜑)   )
8:7: (   𝑦𝑦 = 𝑥   ▶   (∃𝑦𝑦𝜑 𝑦𝑥𝜑)   )
9:: (∃𝑦𝑥𝜑 ↔ ∃𝑥𝑦𝜑)
10:8,9: (   𝑦𝑦 = 𝑥   ▶   (∃𝑦𝑦𝜑 𝑥𝑦𝜑)   )
11:: (∃𝑦𝜑 → ∀𝑦𝑦𝜑)
12:11: (∃𝑦𝑦𝜑 ↔ ∃𝑦𝜑)
13:10,12: (   𝑦𝑦 = 𝑥   ▶   (∃𝑥𝑦𝜑 𝑦𝜑)   )
14:13: (∀𝑦𝑦 = 𝑥 → (∃𝑥𝑦𝜑 ↔ ∃ 𝑦𝜑))
15:: (∀𝑦𝑦 = 𝑥 ↔ ∀𝑥𝑥 = 𝑦)
qed:14,15: (∀𝑥𝑥 = 𝑦 → (∃𝑥𝑦𝜑 ↔ ∃ 𝑦𝜑))
(Contributed by Alan Sare, 27-Nov-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥 𝑥 = 𝑦 → (∃𝑥𝑦𝜑 ↔ ∃𝑦𝜑))
 
21.41.8  Virtual Deduction transcriptions of textbook proofs
 
Theoremsb5ALTVD 44909* The following User's Proof is a Natural Deduction Sequent Calculus transcription of the Fitch-style Natural Deduction proof of Unit 20 Excercise 3.a., which is sb5 2276, found in the "Answers to Starred Exercises" on page 457 of "Understanding Symbolic Logic", Fifth Edition (2008), by Virginia Klenk. The same proof may also be interpreted as a Virtual Deduction Hilbert-style axiomatic proof. It was completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sb5ALT 44522 is sb5ALTVD 44909 without virtual deductions and was automatically derived from sb5ALTVD 44909.
1:: (   [𝑦 / 𝑥]𝜑   ▶   [𝑦 / 𝑥]𝜑   )
2:: [𝑦 / 𝑥]𝑥 = 𝑦
3:1,2: (   [𝑦 / 𝑥]𝜑   ▶   [𝑦 / 𝑥](𝑥 = 𝑦 𝜑)   )
4:3: (   [𝑦 / 𝑥]𝜑   ▶   𝑥(𝑥 = 𝑦𝜑 )   )
5:4: ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑) )
6:: (   𝑥(𝑥 = 𝑦𝜑)   ▶   𝑥(𝑥 = 𝑦𝜑)   )
7:: (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑 )   ▶   (𝑥 = 𝑦𝜑)   )
8:7: (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑 )   ▶   𝜑   )
9:7: (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑 )   ▶   𝑥 = 𝑦   )
10:8,9: (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑 )   ▶   [𝑦 / 𝑥]𝜑   )
101:: ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
11:101,10: (∃𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑 )
12:5,11: (([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑 )) ∧ (∃𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑))
qed:12: ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑) )
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
 
Theoremvk15.4jVD 44910 The following User's Proof is a Natural Deduction Sequent Calculus transcription of the Fitch-style Natural Deduction proof of Unit 15 Excercise 4.f. found in the "Answers to Starred Exercises" on page 442 of "Understanding Symbolic Logic", Fifth Edition (2008), by Virginia Klenk. The same proof may also be interpreted to be a Virtual Deduction Hilbert-style axiomatic proof. It was completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. vk15.4j 44525 is vk15.4jVD 44910 without virtual deductions and was automatically derived from vk15.4jVD 44910. Step numbers greater than 25 are additional steps necessary for the sequent calculus proof not contained in the Fitch-style proof. Otherwise, step i of the User's Proof corresponds to step i of the Fitch-style proof.
h1:: ¬ (∃𝑥¬ 𝜑 ∧ ∃𝑥(𝜓 ¬ 𝜒))
h2:: (∀𝑥𝜒 → ¬ ∃𝑥(𝜃𝜏 ))
h3:: ¬ ∀𝑥(𝜏𝜑)
4:: (   ¬ ∃𝑥¬ 𝜃   ▶   ¬ ∃𝑥¬ 𝜃   )
5:4: (   ¬ ∃𝑥¬ 𝜃   ▶   𝑥𝜃   )
6:3: 𝑥(𝜏 ∧ ¬ 𝜑)
7:: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   (𝜏 ∧ ¬ 𝜑)   )
8:7: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   𝜏   )
9:7: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   ¬ 𝜑   )
10:5: (   ¬ ∃𝑥¬ 𝜃   ▶   𝜃   )
11:10,8: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   (𝜃𝜏)   )
12:11: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   𝑥(𝜃𝜏)   )
13:12: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   ¬ ¬ ∃𝑥(𝜃𝜏)   )
14:2,13: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   ¬ ∀𝑥𝜒   )
140:: (∃𝑥¬ 𝜃 → ∀𝑥𝑥¬ 𝜃 )
141:140: (¬ ∃𝑥¬ 𝜃 → ∀𝑥¬ ∃𝑥 ¬ 𝜃)
142:: (∀𝑥𝜒 → ∀𝑥𝑥𝜒)
143:142: (¬ ∀𝑥𝜒 → ∀𝑥¬ ∀𝑥𝜒 )
144:6,14,141,143: (   ¬ ∃𝑥¬ 𝜃   ▶   ¬ ∀𝑥𝜒    )
15:1: (¬ ∃𝑥¬ 𝜑 ∨ ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒))
16:9: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   𝑥¬ 𝜑   )
161:: (∃𝑥¬ 𝜑 → ∀𝑥𝑥¬ 𝜑 )
162:6,16,141,161: (   ¬ ∃𝑥¬ 𝜃   ▶   𝑥¬ 𝜑    )
17:162: (   ¬ ∃𝑥¬ 𝜃   ▶   ¬ ¬ ∃𝑥 ¬ 𝜑   )
18:15,17: (   ¬ ∃𝑥¬ 𝜃   ▶   ¬ ∃𝑥( 𝜓 ∧ ¬ 𝜒)   )
19:18: (   ¬ ∃𝑥¬ 𝜃   ▶   𝑥(𝜓 𝜒)   )
20:144: (   ¬ ∃𝑥¬ 𝜃   ▶   𝑥¬ 𝜒    )
21:: (   ¬ ∃𝑥¬ 𝜃   ,   ¬ 𝜒   ▶   ¬ 𝜒   )
22:19: (   ¬ ∃𝑥¬ 𝜃   ▶   (𝜓𝜒 )   )
23:21,22: (   ¬ ∃𝑥¬ 𝜃   ,   ¬ 𝜒   ▶   ¬ 𝜓   )
24:23: (   ¬ ∃𝑥¬ 𝜃   ,   ¬ 𝜒   ▶    𝑥¬ 𝜓   )
240:: (∃𝑥¬ 𝜓 → ∀𝑥𝑥¬ 𝜓 )
241:20,24,141,240: (   ¬ ∃𝑥¬ 𝜃   ▶   𝑥¬ 𝜓    )
25:241: (   ¬ ∃𝑥¬ 𝜃   ▶   ¬ ∀𝑥𝜓    )
qed:25: (¬ ∃𝑥¬ 𝜃 → ¬ ∀𝑥𝜓)
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
¬ (∃𝑥 ¬ 𝜑 ∧ ∃𝑥(𝜓 ∧ ¬ 𝜒))    &   (∀𝑥𝜒 → ¬ ∃𝑥(𝜃𝜏))    &    ¬ ∀𝑥(𝜏𝜑)       (¬ ∃𝑥 ¬ 𝜃 → ¬ ∀𝑥𝜓)
 
TheoremnotnotrALTVD 44911 The following User's Proof is a Natural Deduction Sequent Calculus transcription of the Fitch-style Natural Deduction proof of Theorem 5 of Section 14 of [Margaris] p. 59 (which is notnotr 130). The same proof may also be interpreted as a Virtual Deduction Hilbert-style axiomatic proof. It was completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. notnotrALT 44526 is notnotrALTVD 44911 without virtual deductions and was automatically derived from notnotrALTVD 44911. Step i of the User's Proof corresponds to step i of the Fitch-style proof.
1:: (   ¬ ¬ 𝜑   ▶   ¬ ¬ 𝜑   )
2:: (¬ ¬ 𝜑 → (¬ 𝜑 → ¬ ¬ ¬ 𝜑))
3:1: (   ¬ ¬ 𝜑   ▶   𝜑 → ¬ ¬ ¬ 𝜑)   )
4:: ((¬ 𝜑 → ¬ ¬ ¬ 𝜑) → (¬ ¬ 𝜑 𝜑))
5:3: (   ¬ ¬ 𝜑   ▶   (¬ ¬ 𝜑𝜑)   )
6:5,1: (   ¬ ¬ 𝜑   ▶   𝜑   )
qed:6: (¬ ¬ 𝜑𝜑)
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
(¬ ¬ 𝜑𝜑)
 
Theoremcon3ALTVD 44912 The following User's Proof is a Natural Deduction Sequent Calculus transcription of the Fitch-style Natural Deduction proof of Theorem 7 of Section 14 of [Margaris] p. 60 (which is con3 153). The same proof may also be interpreted to be a Virtual Deduction Hilbert-style axiomatic proof. It was completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. con3ALT2 44527 is con3ALTVD 44912 without virtual deductions and was automatically derived from con3ALTVD 44912. Step i of the User's Proof corresponds to step i of the Fitch-style proof.
1:: (   (𝜑𝜓)   ▶   (𝜑𝜓)   )
2:: (   (𝜑𝜓)   ,   ¬ ¬ 𝜑   ▶   ¬ ¬ 𝜑   )
3:: (¬ ¬ 𝜑𝜑)
4:2: (   (𝜑𝜓)   ,   ¬ ¬ 𝜑   ▶   𝜑   )
5:1,4: (   (𝜑𝜓)   ,   ¬ ¬ 𝜑   ▶   𝜓   )
6:: (𝜓 → ¬ ¬ 𝜓)
7:6,5: (   (𝜑𝜓)   ,   ¬ ¬ 𝜑   ▶   ¬ ¬ 𝜓   )
8:7: (   (𝜑𝜓)   ▶   (¬ ¬ 𝜑 → ¬ ¬ 𝜓 )   )
9:: ((¬ ¬ 𝜑 → ¬ ¬ 𝜓) → (¬ 𝜓 ¬ 𝜑))
10:8: (   (𝜑𝜓)   ▶   𝜓 → ¬ 𝜑)   )
qed:10: ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
 
21.41.9  Theorems proved using conjunction-form Virtual Deduction
 
TheoremelpwgdedVD 44913 Membership in a power class. Theorem 86 of [Suppes] p. 47. Derived from elpwg 4569. In form of VD deduction with 𝜑 and 𝜓 as variable virtual hypothesis collections based on Mario Carneiro's metavariable concept. elpwgded 44561 is elpwgdedVD 44913 using conventional notation. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝐴 ∈ V   )    &   (   𝜓   ▶   𝐴𝐵   )       (   (   𝜑   ,   𝜓   )   ▶   𝐴 ∈ 𝒫 𝐵   )
 
Theoremsspwimp 44914 If a class is a subclass of another class, then its power class is a subclass of that other class's power class. Left-to-right implication of Exercise 18 of [TakeutiZaring] p. 18. For the biconditional, see sspwb 5412. The proof sspwimp 44914, using conventional notation, was translated from virtual deduction form, sspwimpVD 44915, using a translation program. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
 
TheoremsspwimpVD 44915 The following User's Proof is a Virtual Deduction proof (see wvd1 44566) using conjunction-form virtual hypothesis collections. It was completed manually, but has the potential to be completed automatically by a tools program which would invoke Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sspwimp 44914 is sspwimpVD 44915 without virtual deductions and was derived from sspwimpVD 44915. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:: (   .............. 𝑥 ∈ 𝒫 𝐴    ▶   𝑥 ∈ 𝒫 𝐴   )
3:2: (   .............. 𝑥 ∈ 𝒫 𝐴    ▶   𝑥𝐴   )
4:3,1: (   (   𝐴𝐵   ,   𝑥 ∈ 𝒫 𝐴   )   ▶   𝑥𝐵   )
5:: 𝑥 ∈ V
6:4,5: (   (   𝐴𝐵   ,   𝑥 ∈ 𝒫 𝐴   )   ▶   𝑥 ∈ 𝒫 𝐵    )
7:6: (   𝐴𝐵   ▶   (𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵)    )
8:7: (   𝐴𝐵   ▶   𝑥(𝑥 ∈ 𝒫 𝐴𝑥 𝒫 𝐵)   )
9:8: (   𝐴𝐵   ▶   𝒫 𝐴 ⊆ 𝒫 𝐵   )
qed:9: (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
(𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
 
Theoremsspwimpcf 44916 If a class is a subclass of another class, then its power class is a subclass of that other class's power class. Left-to-right implication of Exercise 18 of [TakeutiZaring] p. 18. sspwimpcf 44916, using conventional notation, was translated from its virtual deduction form, sspwimpcfVD 44917, using a translation program. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
 
TheoremsspwimpcfVD 44917 The following User's Proof is a Virtual Deduction proof (see wvd1 44566) using conjunction-form virtual hypothesis collections. It was completed automatically by a tools program which would invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sspwimpcf 44916 is sspwimpcfVD 44917 without virtual deductions and was derived from sspwimpcfVD 44917. The version of completeusersproof.cmd used is capable of only generating conjunction-form unification theorems, not unification deductions. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:: (   ........... 𝑥 ∈ 𝒫 𝐴    ▶   𝑥 ∈ 𝒫 𝐴   )
3:2: (   ........... 𝑥 ∈ 𝒫 𝐴    ▶   𝑥𝐴   )
4:3,1: (   (   𝐴𝐵   ,   𝑥 ∈ 𝒫 𝐴   )   ▶   𝑥𝐵   )
5:: 𝑥 ∈ V
6:4,5: (   (   𝐴𝐵   ,   𝑥 ∈ 𝒫 𝐴   )   ▶   𝑥 ∈ 𝒫 𝐵    )
7:6: (   𝐴𝐵   ▶   (𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵)    )
8:7: (   𝐴𝐵   ▶   𝑥(𝑥 ∈ 𝒫 𝐴𝑥 𝒫 𝐵)   )
9:8: (   𝐴𝐵   ▶   𝒫 𝐴 ⊆ 𝒫 𝐵   )
qed:9: (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
(𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
 
TheoremsuctrALTcf 44918 The successor of a transitive class is transitive. suctrALTcf 44918, using conventional notation, was translated from virtual deduction form, suctrALTcfVD 44919, using a translation program. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(Tr 𝐴 → Tr suc 𝐴)
 
TheoremsuctrALTcfVD 44919 The following User's Proof is a Virtual Deduction proof (see wvd1 44566) using conjunction-form virtual hypothesis collections. The conjunction-form version of completeusersproof.cmd. It allows the User to avoid superflous virtual hypotheses. This proof was completed automatically by a tools program which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. suctrALTcf 44918 is suctrALTcfVD 44919 without virtual deductions and was derived automatically from suctrALTcfVD 44919. The version of completeusersproof.cmd used is capable of only generating conjunction-form unification theorems, not unification deductions. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   Tr 𝐴   ▶   Tr 𝐴   )
2:: (   ......... (𝑧𝑦𝑦 suc 𝐴)   ▶   (𝑧𝑦𝑦 ∈ suc 𝐴)   )
3:2: (   ......... (𝑧𝑦𝑦 suc 𝐴)   ▶   𝑧𝑦   )
4:: (   ................................... ....... 𝑦𝐴   ▶   𝑦𝐴   )
5:1,3,4: (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴) , 𝑦𝐴   )   ▶   𝑧𝐴   )
6:: 𝐴 ⊆ suc 𝐴
7:5,6: (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴) , 𝑦𝐴   )   ▶   𝑧 ∈ suc 𝐴   )
8:7: (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)    )   ▶   (𝑦𝐴𝑧 ∈ suc 𝐴)   )
9:: (   ................................... ...... 𝑦 = 𝐴   ▶   𝑦 = 𝐴   )
10:3,9: (   ........ (   (𝑧𝑦𝑦 suc 𝐴), 𝑦 = 𝐴   )   ▶   𝑧𝐴   )
11:10,6: (   ........ (   (𝑧𝑦𝑦 suc 𝐴), 𝑦 = 𝐴   )   ▶   𝑧 ∈ suc 𝐴   )
12:11: (   .......... (𝑧𝑦𝑦 suc 𝐴)   ▶   (𝑦 = 𝐴𝑧 ∈ suc 𝐴)   )
13:2: (   .......... (𝑧𝑦𝑦 suc 𝐴)   ▶   𝑦 ∈ suc 𝐴   )
14:13: (   .......... (𝑧𝑦𝑦 suc 𝐴)   ▶   (𝑦𝐴𝑦 = 𝐴)   )
15:8,12,14: (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)    )   ▶   𝑧 ∈ suc 𝐴   )
16:15: (   Tr 𝐴   ▶   ((𝑧𝑦𝑦 suc 𝐴) → 𝑧 ∈ suc 𝐴)   )
17:16: (   Tr 𝐴   ▶   𝑧𝑦((𝑧 𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴)   )
18:17: (   Tr 𝐴   ▶   Tr suc 𝐴   )
qed:18: (Tr 𝐴 → Tr suc 𝐴)
(Tr 𝐴 → Tr suc 𝐴)
 
21.41.10  Theorems with a VD proof in conventional notation derived from a VD proof
 
TheoremsuctrALT3 44920 The successor of a transitive class is transitive. suctrALT3 44920 is the completed proof in conventional notation of the Virtual Deduction proof https://us.metamath.org/other/completeusersproof/suctralt3vd.html 44920. It was completed manually. The potential for automated derivation from the VD proof exists. See wvd1 44566 for a description of Virtual Deduction. Some sub-theorems of the proof were completed using a unification deduction (e.g., the sub-theorem whose assertion is step 19 used jaoded 44563). Unification deductions employ Mario Carneiro's metavariable concept. Some sub-theorems were completed using a unification theorem (e.g., the sub-theorem whose assertion is step 24 used dftr2 5219) . (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(Tr 𝐴 → Tr suc 𝐴)
 
TheoremsspwimpALT 44921 If a class is a subclass of another class, then its power class is a subclass of that other class's power class. Left-to-right implication of Exercise 18 of [TakeutiZaring] p. 18. sspwimpALT 44921 is the completed proof in conventional notation of the Virtual Deduction proof https://us.metamath.org/other/completeusersproof/sspwimpaltvd.html 44921. It was completed manually. The potential for automated derivation from the VD proof exists. See wvd1 44566 for a description of Virtual Deduction. Some sub-theorems of the proof were completed using a unification deduction (e.g., the sub-theorem whose assertion is step 9 used elpwgded 44561). Unification deductions employ Mario Carneiro's metavariable concept. Some sub-theorems were completed using a unification theorem (e.g., the sub-theorem whose assertion is step 5 used elpwi 4573). (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
 
TheoremunisnALT 44922 A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. The User manually input on a mmj2 Proof Worksheet, without labels, all steps of unisnALT 44922 except 1, 11, 15, 21, and 30. With execution of the mmj2 unification command, mmj2 could find labels for all steps except for 2, 12, 16, 22, and 31 (and the then non-existing steps 1, 11, 15, 21, and 30). mmj2 could not find reference theorems for those five steps because the hypothesis field of each of these steps was empty and none of those steps unifies with a theorem in set.mm. Each of these five steps is a semantic variation of a theorem in set.mm and is 2-step provable. mmj2 does not have the ability to automatically generate the semantic variation in set.mm of a theorem in a mmj2 Proof Worksheet unless the theorem in the Proof Worksheet is labeled with a 1-hypothesis deduction whose hypothesis is a theorem in set.mm which unifies with the theorem in the Proof Worksheet. The stepprover.c program, which invokes mmj2, has this capability. stepprover.c automatically generated steps 1, 11, 15, 21, and 30, labeled all steps, and generated the RPN proof of unisnALT 44922. Roughly speaking, stepprover.c added to the Proof Worksheet a labeled duplicate step of each non-unifying theorem for each label in a text file, labels.txt, containing a list of labels provided by the User. Upon mmj2 unification, stepprover.c identified a label for each of the five theorems which 2-step proves it. For unisnALT 44922, the label list is a list of all 1-hypothesis propositional calculus deductions in set.mm. stepproverp.c is the same as stepprover.c except that it intermittently pauses during execution, allowing the User to observe the changes to a text file caused by the execution of particular statements of the program. (Contributed by Alan Sare, 19-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐴 ∈ V        {𝐴} = 𝐴
 
21.41.11  Theorems with a proof in conventional notation derived from a VD proof

Theorems with a proof in conventional notation automatically derived by completeusersproof.c from a Virtual Deduction User's Proof.

 
TheoremnotnotrALT2 44923 Converse of double negation. Theorem *2.14 of [WhiteheadRussell] p. 102. Proof derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
(¬ ¬ 𝜑𝜑)
 
TheoremsspwimpALT2 44924 If a class is a subclass of another class, then its power class is a subclass of that other class's power class. Left-to-right implication of Exercise 18 of [TakeutiZaring] p. 18. Proof derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in https://us.metamath.org/other/completeusersproof/sspwimpaltvd.html. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
 
Theoreme2ebindALT 44925 Absorption of an existential quantifier of a double existential quantifier of non-distinct variables. The proof is derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in e2ebindVD 44908. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥 𝑥 = 𝑦 → (∃𝑥𝑦𝜑 ↔ ∃𝑦𝜑))
 
Theoremax6e2ndALT 44926* If at least two sets exist (dtru 5399), then the same is true expressed in an alternate form similar to the form of ax6e 2382. The proof is derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in ax6e2ndVD 44904. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
(¬ ∀𝑥 𝑥 = 𝑦 → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
 
Theoremax6e2ndeqALT 44927* "At least two sets exist" expressed in the form of dtru 5399 is logically equivalent to the same expressed in a form similar to ax6e 2382 if dtru 5399 is false implies 𝑢 = 𝑣. Proof derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in ax6e2ndeqVD 44905. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) ↔ ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
 
Theorem2sb5ndALT 44928* Equivalence for double substitution 2sb5 2278 without distinct 𝑥, 𝑦 requirement. 2sb5nd 44557 is derived from 2sb5ndVD 44906. The proof is derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in 2sb5ndVD 44906. (Contributed by Alan Sare, 19-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
 
TheoremchordthmALT 44929* The intersecting chords theorem. If points A, B, C, and D lie on a circle (with center Q, say), and the point P is on the interior of the segments AB and CD, then the two products of lengths PA · PB and PC · PD are equal. The Euclidean plane is identified with the complex plane, and the fact that P is on AB and on CD is expressed by the hypothesis that the angles APB and CPD are equal to π. The result is proven by using chordthmlem5 26753 twice to show that PA · PB and PC · PD both equal BQ 2 PQ 2 . This is similar to the proof of the theorem given in Euclid's Elements, where it is Proposition III.35. Proven by David Moews on 28-Feb-2017 as chordthm 26754. https://us.metamath.org/other/completeusersproof/chordthmaltvd.html 26754 is a Virtual Deduction User's Proof transcription of chordthm 26754. That VD User's Proof was input into completeusersproof, automatically generating this chordthmALT 44929 Metamath proof. (Contributed by Alan Sare, 19-Sep-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))    &   (𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)    &   (𝜑𝑃 ∈ ℂ)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑 → ((𝐴𝑃)𝐹(𝐵𝑃)) = π)    &   (𝜑 → ((𝐶𝑃)𝐹(𝐷𝑃)) = π)    &   (𝜑𝑄 ∈ ℂ)    &   (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))    &   (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐶𝑄)))    &   (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐷𝑄)))       (𝜑 → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷))))
 
Theoremisosctrlem1ALT 44930 Lemma for isosctr 26738. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart https://us.metamath.org/other/completeusersproof/isosctrlem1altvd.html 26738. As it is verified by the Metamath program, isosctrlem1ALT 44930 verifies https://us.metamath.org/other/completeusersproof/isosctrlem1altvd.html 44930. (Contributed by Alan Sare, 22-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≠ π)
 
Theoremiunconnlem2 44931* The indexed union of connected overlapping subspaces sharing a common point is connected. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart https://us.metamath.org/other/completeusersproof/iunconlem2vd.html. As it is verified by the Metamath program, iunconnlem2 44931 verifies https://us.metamath.org/other/completeusersproof/iunconlem2vd.html 44931. (Contributed by Alan Sare, 22-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜓 ↔ ((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))    &   (𝜑𝐽 ∈ (TopOn‘𝑋))    &   ((𝜑𝑘𝐴) → 𝐵𝑋)    &   ((𝜑𝑘𝐴) → 𝑃𝐵)    &   ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)       (𝜑 → (𝐽t 𝑘𝐴 𝐵) ∈ Conn)
 
TheoremiunconnALT 44932* The indexed union of connected overlapping subspaces sharing a common point is connected. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart https://us.metamath.org/other/completeusersproof/iunconaltvd.html. As it is verified by the Metamath program, iunconnALT 44932 verifies https://us.metamath.org/other/completeusersproof/iunconaltvd.html 44932. (Contributed by Alan Sare, 22-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝐽 ∈ (TopOn‘𝑋))    &   ((𝜑𝑘𝐴) → 𝐵𝑋)    &   ((𝜑𝑘𝐴) → 𝑃𝐵)    &   ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)       (𝜑 → (𝐽t 𝑘𝐴 𝐵) ∈ Conn)
 
Theoremsineq0ALT 44933 A complex number whose sine is zero is an integer multiple of π. The Virtual Deduction form of the proof is https://us.metamath.org/other/completeusersproof/sineq0altvd.html. The Metamath form of the proof is sineq0ALT 44933. The Virtual Deduction proof is based on Mario Carneiro's revision of Norm Megill's proof of sineq0 26440. The Virtual Deduction proof is verified by automatically transforming it into the Metamath form of the proof using completeusersproof, which is verified by the Metamath program. The proof of https://us.metamath.org/other/completeusersproof/sineq0altro.html 26440 is a form of the completed proof which preserves the Virtual Deduction proof's step numbers and their ordering. (Contributed by Alan Sare, 13-Jun-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (𝐴 / π) ∈ ℤ))
 
21.42  Mathbox for Eric Schmidt
 
21.42.1  Miscellany
 
Theoremrspesbcd 44934* Restricted quantifier version of spesbcd 3849. (Contributed by Eric Schmidt, 29-Sep-2025.)
(𝜑𝐴𝐵)    &   (𝜑[𝐴 / 𝑥]𝜓)       (𝜑 → ∃𝑥𝐵 𝜓)
 
Theoremrext0 44935* Nonempty existential quantification of a theorem is true. (Contributed by Eric Schmidt, 19-Oct-2025.)
𝜑       (∃𝑥𝐴 𝜑𝐴 ≠ ∅)
 
21.42.2  Study of dfbi1ALT
 
Theoremdfbi1ALTa 44936 Version of dfbi1ALT 214 using for step 2 and shortened using a1i 11, a2i 14, and con4i 114. (Contributed by Eric Schmidt, 22-Oct-2025.) (New usage is discouraged.) (Proof modification is discouraged.)
((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑)))
 
Theoremsimprimi 44937 Inference associated with simprim 166. Proved exactly as step 11 is obtained from step 4 in dfbi1ALTa 44936. (Contributed by Eric Schmidt, 22-Oct-2025.) (New usage is discouraged.) (Proof modification is discouraged.)
¬ (𝜑 → ¬ 𝜓)       𝜓
 
Theoremdfbi1ALTb 44938 Further shorten dfbi1ALTa 44936 using simprimi 44937. (Contributed by Eric Schmidt, 22-Oct-2025.) (New usage is discouraged.) (Proof modification is discouraged.)
((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑)))
 
21.42.3  Relation-preserving functions
 
Syntaxwrelp 44939 Extend the definition of a wff to include the relation-preserving property. (Contributed by Eric Schmidt, 11-Oct-2025.)
wff 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵)
 
Definitiondf-relp 44940* Define the relation-preserving predicate. This is a viable notion of "homomorphism" corresponding to df-isom 6523. (Contributed by Eric Schmidt, 11-Oct-2025.)
(𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ (𝐻:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦))))
 
Theoremrelpeq1 44941 Equality theorem for relation-preserving functions. (Contributed by Eric Schmidt, 11-Oct-2025.)
(𝐻 = 𝐺 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐺 RelPres 𝑅, 𝑆(𝐴, 𝐵)))
 
Theoremrelpeq2 44942 Equality theorem for relation-preserving functions. (Contributed by Eric Schmidt, 11-Oct-2025.)
(𝑅 = 𝑇 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑇, 𝑆(𝐴, 𝐵)))
 
Theoremrelpeq3 44943 Equality theorem for relation-preserving functions. (Contributed by Eric Schmidt, 11-Oct-2025.)
(𝑆 = 𝑇 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑅, 𝑇(𝐴, 𝐵)))
 
Theoremrelpeq4 44944 Equality theorem for relation-preserving functions. (Contributed by Eric Schmidt, 11-Oct-2025.)
(𝐴 = 𝐶 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑅, 𝑆(𝐶, 𝐵)))
 
Theoremrelpeq5 44945 Equality theorem for relation-preserving functions. (Contributed by Eric Schmidt, 11-Oct-2025.)
(𝐵 = 𝐶 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐶)))
 
Theoremnfrelp 44946 Bound-variable hypothesis builder for a relation-preserving function. (Contributed by Eric Schmidt, 11-Oct-2025.)
𝑥𝐻    &   𝑥𝑅    &   𝑥𝑆    &   𝑥𝐴    &   𝑥𝐵       𝑥 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵)
 
Theoremrelpf 44947 A relation-preserving function is a function. (Contributed by Eric Schmidt, 11-Oct-2025.)
(𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → 𝐻:𝐴𝐵)
 
Theoremrelprel 44948 A relation-preserving function preserves the relation. (Contributed by Eric Schmidt, 11-Oct-2025.)
((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝑅𝐷 → (𝐻𝐶)𝑆(𝐻𝐷)))
 
Theoremrelpmin 44949 A preimage of a minimal element under a relation-preserving function is minimal. Essentially one half of isomin 7315. (Contributed by Eric Schmidt, 11-Oct-2025.)
((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) = ∅ → (𝐶 ∩ (𝑅 “ {𝐷})) = ∅))
 
Theoremrelpfrlem 44950* Lemma for relpfr 44951. Proved without using the Axiom of Replacement. This is isofrlem 7318 with weaker hypotheses. (Contributed by Eric Schmidt, 11-Oct-2025.)
(𝜑𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵))    &   (𝜑 → (𝐻𝑥) ∈ V)       (𝜑 → (𝑆 Fr 𝐵𝑅 Fr 𝐴))
 
Theoremrelpfr 44951 If the image of a set under a relation-preserving function is well-founded, so is the set. See isofr 7320 for a bidirectional statement. A more general version of Lemma I.9.9 of [Kunen2] p. 47. (Contributed by Eric Schmidt, 11-Oct-2025.)
(𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → (𝑆 Fr 𝐵𝑅 Fr 𝐴))
 
21.42.4  Orbits
 
Theoremorbitex 44952 Orbits exist. Given a set 𝐴 and a function 𝐹, the orbit of 𝐴 under 𝐹 is the smallest set 𝑍 such that 𝐴𝑍 and 𝑍 is closed under 𝐹. (Contributed by Eric Schmidt, 6-Nov-2025.)
(rec(𝐹, 𝐴) “ ω) ∈ V
 
Theoremorbitinit 44953 A set is contained in its orbit. (Contributed by Eric Schmidt, 6-Nov-2025.)
(𝐴𝑉𝐴 ∈ (rec(𝐹, 𝐴) “ ω))
 
Theoremorbitcl 44954 The orbit under a function is closed under the function. (Contributed by Eric Schmidt, 6-Nov-2025.)
(𝐵 ∈ (rec(𝐹, 𝐴) “ ω) → (𝐹𝐵) ∈ (rec(𝐹, 𝐴) “ ω))
 
Theoremorbitclmpt 44955 Version of orbitcl 44954 using maps-to notation. (Contributed by Eric Schmidt, 6-Nov-2025.)
𝑥𝐵    &   𝑥𝐷    &   𝑍 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) “ ω)    &   (𝑥 = 𝐵𝐶 = 𝐷)       ((𝐵𝑍𝐷𝑉) → 𝐷𝑍)
 
21.42.5  Well-founded sets
 
Theoremtrwf 44956 The class of well-founded sets is transitive. (Contributed by Eric Schmidt, 9-Sep-2025.)
Tr (𝑅1 “ On)
 
Theoremrankrelp 44957 The rank function preserves . (Contributed by Eric Schmidt, 11-Oct-2025.)
rank RelPres E , E ( (𝑅1 “ On), On)
 
Theoremwffr 44958 The class of well-founded sets is well-founded. Lemma I.9.24(2) of [Kunen2] p. 53. (Contributed by Eric Schmidt, 11-Oct-2025.)
E Fr (𝑅1 “ On)
 
Theoremtrfr 44959 A transitive class well-founded by is a subclass of the class of well-founded sets. Part of Lemma I.9.21 of [Kunen2] p. 53. (Contributed by Eric Schmidt, 26-Oct-2025.)
((Tr 𝐴 ∧ E Fr 𝐴) → 𝐴 (𝑅1 “ On))
 
Theoremtcfr 44960 A set is well-founded if and only if its transitive closure is well-founded by . This characterization of well-founded sets is that in Definition I.9.20 of [Kunen2] p. 53. (Contributed by Eric Schmidt, 26-Oct-2025.)
𝐴 ∈ V       (𝐴 (𝑅1 “ On) ↔ E Fr (TC‘𝐴))
 
Theoremxpwf 44961 The Cartesian product of two well-founded sets is well-founded. (Contributed by Eric Schmidt, 12-Sep-2025.)
((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (𝐴 × 𝐵) ∈ (𝑅1 “ On))
 
Theoremdmwf 44962 The domain of a well-founded set is well-founded. (Contributed by Eric Schmidt, 12-Sep-2025.)
(𝐴 (𝑅1 “ On) → dom 𝐴 (𝑅1 “ On))
 
Theoremrnwf 44963 The range of a well-founded set is well-founded. (Contributed by Eric Schmidt, 12-Sep-2025.)
(𝐴 (𝑅1 “ On) → ran 𝐴 (𝑅1 “ On))
 
Theoremrelwf 44964 A relation is a well-founded set iff its domain and range are. (Contributed by Eric Schmidt, 29-Sep-2025.)
(Rel 𝑅 → (𝑅 (𝑅1 “ On) ↔ (dom 𝑅 (𝑅1 “ On) ∧ ran 𝑅 (𝑅1 “ On))))
 
21.42.6  Absoluteness in transitive models
 
Theoremralabso 44965* Simplification of restricted quantification in a transitive class. When 𝜑 is quantifier-free, this shows that the formula 𝑥𝑦𝜑 is absolute for transitive models, which is a particular case of Lemma I.16.2 of [Kunen2] p. 95. (Contributed by Eric Schmidt, 19-Oct-2025.)
((Tr 𝑀𝐴𝑀) → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝑀 (𝑥𝐴𝜑)))
 
Theoremrexabso 44966* Simplification of restricted quantification in a transitive class. When 𝜑 is quantifier-free, this shows that the formula 𝑥𝑦𝜑 is absolute for transitive models, which is a particular case of Lemma I.16.2 of [Kunen2] p. 95. (Contributed by Eric Schmidt, 19-Oct-2025.)
((Tr 𝑀𝐴𝑀) → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝑀 (𝑥𝐴𝜑)))
 
Theoremralabsod 44967* Deduction form of ralabso 44965. (Contributed by Eric Schmidt, 19-Oct-2025.)
(𝜑 → Tr 𝑀)       ((𝜑𝐴𝑀) → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝑀 (𝑥𝐴𝜓)))
 
Theoremrexabsod 44968* Deduction form of rexabso 44966. (Contributed by Eric Schmidt, 19-Oct-2025.)
(𝜑 → Tr 𝑀)       ((𝜑𝐴𝑀) → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝑀 (𝑥𝐴𝜓)))
 
Theoremralabsobidv 44969* Formula-building lemma for proving absoluteness results. (Contributed by Eric Schmidt, 19-Oct-2025.)
(𝜑 → Tr 𝑀)    &   (𝜑 → (𝜓𝜒))       ((𝜑𝐴𝑀) → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝑀 (𝑥𝐴𝜒)))
 
Theoremrexabsobidv 44970* Formula-building lemma for proving absoluteness results. (Contributed by Eric Schmidt, 19-Oct-2025.)
(𝜑 → Tr 𝑀)    &   (𝜑 → (𝜓𝜒))       ((𝜑𝐴𝑀) → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝑀 (𝑥𝐴𝜒)))
 
Theoremssabso 44971* The notion "𝑥 is a subset of 𝑦 " is absolute for transitive models. Compare Example I.16.3 of [Kunen2] p. 96 and the following discussion. (Contributed by Eric Schmidt, 19-Oct-2025.)
((Tr 𝑀𝐴𝑀) → (𝐴𝐵 ↔ ∀𝑥𝑀 (𝑥𝐴𝑥𝐵)))
 
Theoremdisjabso 44972* Disjointness is absolute for transitive models. Compare Example I.16.3 of [Kunen2] p. 96 and the following discussion. (Contributed by Eric Schmidt, 19-Oct-2025.)
((Tr 𝑀𝐴𝑀) → ((𝐴𝐵) = ∅ ↔ ∀𝑥𝑀 (𝑥𝐴 → ¬ 𝑥𝐵)))
 
Theoremn0abso 44973* Nonemptiness is absolute for transitive models. Compare Example I.16.3 of [Kunen2] p. 96 and the following discussion. (Contributed by Eric Schmidt, 19-Oct-2025.)
((Tr 𝑀𝐴𝑀) → (𝐴 ≠ ∅ ↔ ∃𝑥𝑀 𝑥𝐴))
 
21.42.7  Lemmas for showing axioms hold in models
 
Theoremtraxext 44974* A transitive class models the Axiom of Extensionality ax-ext 2702. Lemma II.2.4(1) of [Kunen2] p. 111. (Contributed by Eric Schmidt, 11-Sep-2025.)
(Tr 𝑀 → ∀𝑥𝑀𝑦𝑀 (∀𝑧𝑀 (𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦))
 
Theoremmodelaxreplem1 44975* Lemma for modelaxrep 44978. We show that 𝑀 is closed under taking subsets. (Contributed by Eric Schmidt, 29-Sep-2025.)
(𝜓𝑥𝑀)    &   (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀))    &   (𝜓 → ∅ ∈ 𝑀)    &   (𝜓𝑥𝑀)    &   𝐴𝑥       (𝜓𝐴𝑀)
 
Theoremmodelaxreplem2 44976* Lemma for modelaxrep 44978. We define a class 𝐹 and show that the antecedent of Replacement implies that 𝐹 is a function. We use Replacement (in the form of funex 7196) to show that 𝐹 exists. Then we show that, under our hypotheses, the range of 𝐹 is a member of 𝑀. (Contributed by Eric Schmidt, 29-Sep-2025.)
(𝜓𝑥𝑀)    &   (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀))    &   (𝜓 → ∅ ∈ 𝑀)    &   (𝜓𝑥𝑀)    &   𝑤𝜓    &   𝑧𝜓    &   𝑧𝐹    &   𝐹 = {⟨𝑤, 𝑧⟩ ∣ (𝑤𝑥 ∧ (𝑧𝑀 ∧ ∀𝑦𝜑))}    &   (𝜓 → (𝑤𝑀 → ∃𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)))       (𝜓 → ran 𝐹𝑀)
 
Theoremmodelaxreplem3 44977* Lemma for modelaxrep 44978. We show that the consequent of Replacement is satisfied with ran 𝐹 as the value of 𝑦. (Contributed by Eric Schmidt, 29-Sep-2025.)
(𝜓𝑥𝑀)    &   (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀))    &   (𝜓 → ∅ ∈ 𝑀)    &   (𝜓𝑥𝑀)    &   𝑤𝜓    &   𝑧𝜓    &   𝑧𝐹    &   𝐹 = {⟨𝑤, 𝑧⟩ ∣ (𝑤𝑥 ∧ (𝑧𝑀 ∧ ∀𝑦𝜑))}    &   (𝜓 → (𝑤𝑀 → ∃𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)))       (𝜓 → ∃𝑦𝑀𝑧𝑀 (𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)))
 
Theoremmodelaxrep 44978* Conditions which guarantee that a class models the Axiom of Replacement ax-rep 5237. Similar to Lemma II.2.4(6) of [Kunen2] p. 111. The first two hypotheses are those in Kunen. The reason for the third hypothesis that our version of Replacement is different from Kunen's (which is zfrep6 7936). If we assumed Regularity, we could eliminate this extra hypothesis, since under Regularity, the empty set is a member of every non-empty transitive class.

Note that, to obtain the relativization of an instance of Replacement to 𝑀, the formula 𝑦𝜑 would need to be replaced with 𝑦𝑀𝜒, where 𝜒 is 𝜑 with all quantifiers relativized to 𝑀. However, we can obtain this by using 𝑦𝑀𝜒 for 𝜑 in this theorem, so it does establish that all instances of Replacement hold in 𝑀. (Contributed by Eric Schmidt, 29-Sep-2025.)

(𝜓 → Tr 𝑀)    &   (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀))    &   (𝜓 → ∅ ∈ 𝑀)       (𝜓 → ∀𝑥𝑀 (∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑀𝑧𝑀 (𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑))))
 
Theoremssclaxsep 44979* A class that is closed under subsets models the Axiom of Separation ax-sep 5254. Lemma II.2.4(3) of [Kunen2] p. 111.

Note that, to obtain the relativization of an instance of Separation to 𝑀, the formula 𝜑 would need to be replaced with its relativization to 𝑀. However, this new formula is a valid substitution for 𝜑, so this theorem does establish that all instances of Separation hold in 𝑀. (Contributed by Eric Schmidt, 29-Sep-2025.)

(∀𝑧𝑀 𝒫 𝑧𝑀 → ∀𝑧𝑀𝑦𝑀𝑥𝑀 (𝑥𝑦 ↔ (𝑥𝑧𝜑)))
 
Theorem0elaxnul 44980* A class that contains the empty set models the Null Set Axiom ax-nul 5264. (Contributed by Eric Schmidt, 19-Oct-2025.)
(∅ ∈ 𝑀 → ∃𝑥𝑀𝑦𝑀 ¬ 𝑦𝑥)
 
Theorempwclaxpow 44981* Suppose 𝑀 is a transitive class that is closed under power sets intersected with 𝑀. Then, 𝑀 models the Axiom of Power Sets ax-pow 5323. One direction of Lemma II.2.8 of [Kunen2] p. 113. (Contributed by Eric Schmidt, 19-Oct-2025.)
((Tr 𝑀 ∧ ∀𝑥𝑀 (𝒫 𝑥𝑀) ∈ 𝑀) → ∀𝑥𝑀𝑦𝑀𝑧𝑀 (∀𝑤𝑀 (𝑤𝑧𝑤𝑥) → 𝑧𝑦))
 
Theoremprclaxpr 44982* A class that is closed under the pairing operation models the Axiom of Pairing ax-pr 5390. Lemma II.2.4(4) of [Kunen2] p. 111. (Contributed by Eric Schmidt, 29-Sep-2025.)
(∀𝑥𝑀𝑦𝑀 {𝑥, 𝑦} ∈ 𝑀 → ∀𝑥𝑀𝑦𝑀𝑧𝑀𝑤𝑀 ((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑧))
 
Theoremuniclaxun 44983* A class that is closed under the union operation models the Axiom of Union ax-un 7714. Lemma II.2.4(5) of [Kunen2] p. 111. (Contributed by Eric Schmidt, 1-Oct-2025.)
(∀𝑥𝑀 𝑥𝑀 → ∀𝑥𝑀𝑦𝑀𝑧𝑀 (∃𝑤𝑀 (𝑧𝑤𝑤𝑥) → 𝑧𝑦))
 
Theoremsswfaxreg 44984* A subclass of the class of well-founded sets models the Axiom of Regularity ax-reg 9552. Lemma II.2.4(2) of [Kunen2] p. 111. (Contributed by Eric Schmidt, 19-Oct-2025.)
(𝑀 (𝑅1 “ On) → ∀𝑥𝑀 (∃𝑦𝑀 𝑦𝑥 → ∃𝑦𝑀 (𝑦𝑥 ∧ ∀𝑧𝑀 (𝑧𝑦 → ¬ 𝑧𝑥))))
 
Theoremomssaxinf2 44985* A class that contains all ordinals up to and including ω models the Axiom of Infinity ax-inf2 9601. The antecedent of this theorem is not enough to guarantee that the class models the alternate axiom ax-inf 9598. (Contributed by Eric Schmidt, 19-Oct-2025.)
((ω ⊆ 𝑀 ∧ ω ∈ 𝑀) → ∃𝑥𝑀 (∃𝑦𝑀 (𝑦𝑥 ∧ ∀𝑧𝑀 ¬ 𝑧𝑦) ∧ ∀𝑦𝑀 (𝑦𝑥 → ∃𝑧𝑀 (𝑧𝑥 ∧ ∀𝑤𝑀 (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))))
 
Theoremomelaxinf2 44986* A transitive class that contains ω models the Axiom of Infinity ax-inf2 9601. Lemma II.2.11(7) of [Kunen2] p. 114. Kunen has the additional hypotheses that the Extensionality, Separation, Pairing, and Union axioms are true in 𝑀. This, apparently, is because Kunen's statement of the Axiom of Infinity uses the defined notions and suc, and these axioms guarantee that these notions are well-defined. When we state the axiom using primitives only, the need for these hypotheses disappears.

The antecedent of this theorem is not enough to guarantee that the class models the alternate axiom ax-inf 9598. (Contributed by Eric Schmidt, 19-Oct-2025.)

((Tr 𝑀 ∧ ω ∈ 𝑀) → ∃𝑥𝑀 (∃𝑦𝑀 (𝑦𝑥 ∧ ∀𝑧𝑀 ¬ 𝑧𝑦) ∧ ∀𝑦𝑀 (𝑦𝑥 → ∃𝑧𝑀 (𝑧𝑥 ∧ ∀𝑤𝑀 (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))))
 
Theoremdfac5prim 44987* dfac5 10089 expanded into primitives. (Contributed by Eric Schmidt, 19-Oct-2025.)
(CHOICE ↔ ∀𝑥((∀𝑧(𝑧𝑥 → ∃𝑤 𝑤𝑧) ∧ ∀𝑧𝑤((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦(𝑦𝑧 → ¬ 𝑦𝑤)))) → ∃𝑦𝑧(𝑧𝑥 → ∃𝑤𝑣((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤))))
 
Theoremac8prim 44988* ac8 10452 expanded into primitives. (Contributed by Eric Schmidt, 19-Oct-2025.)
((∀𝑧(𝑧𝑥 → ∃𝑤 𝑤𝑧) ∧ ∀𝑧𝑤((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦(𝑦𝑧 → ¬ 𝑦𝑤)))) → ∃𝑦𝑧(𝑧𝑥 → ∃𝑤𝑣((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤)))
 
Theoremmodelac8prim 44989* If 𝑀 is a transitive class, then the following are equivalent. (1) Every nonempty set 𝑥𝑀 of pairwise disjoint nonempty sets has a choice set in 𝑀. (2) The class 𝑀 models the Axiom of Choice, in the form ac8prim 44988.

Lemma II.2.11(7) of [Kunen2] p. 114. Kunen has the additional hypotheses that the Extensionality, Separation, Pairing, and Union axioms are true in 𝑀. This, apparently, is because Kunen's statement of the Axiom of Choice uses defined notions, including and , and these axioms guarantee that these notions are well-defined. When we state the axiom using primitives only, the need for these hypotheses disappears. (Contributed by Eric Schmidt, 19-Oct-2025.)

(Tr 𝑀 → (∀𝑥𝑀 ((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)) ↔ ∀𝑥𝑀 ((∀𝑧𝑀 (𝑧𝑥 → ∃𝑤𝑀 𝑤𝑧) ∧ ∀𝑧𝑀𝑤𝑀 ((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦𝑀 (𝑦𝑧 → ¬ 𝑦𝑤)))) → ∃𝑦𝑀𝑧𝑀 (𝑧𝑥 → ∃𝑤𝑀𝑣𝑀 ((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤)))))
 
21.42.8  The class of well-founded sets is a model for ZFC
 
Theoremwfaxext 44990* The class of well-founded sets models the Axiom of Extensionality ax-ext 2702. Part of Corollary II.2.5 of [Kunen2] p. 112.

This is the first of a series of theorems showing that all the axioms of ZFC hold in the class of well-founded sets, which we here denote by 𝑊. More precisely, for each axiom of ZFC, we obtain a provable statement if we restrict all quantifiers to 𝑊 (including implicit universal quantifiers on free variables).

None of these proofs use the Axiom of Regularity. In particular, the Axiom of Regularity itself is proved to hold in 𝑊 without using Regularity. Further, the Axiom of Choice is used only in the proof that Choice holds in 𝑊. This has the consequence that any theorem of ZF (possibly proved using Regularity) can be proved, without using Regularity, to hold in 𝑊. This gives us a relative consistency result: If ZF without Regularity is consistent, so is ZF itself. Similarly, if ZFC without Regularity is consistent, so is ZFC itself. These consistency results are metatheorems and are part of Theorem II.2.13 of [Kunen2] p. 114.

(Contributed by Eric Schmidt, 11-Sep-2025.) (Revised by Eric Schmidt, 29-Sep-2025.)

𝑊 = (𝑅1 “ On)       𝑥𝑊𝑦𝑊 (∀𝑧𝑊 (𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
 
Theoremwfaxrep 44991* The class of well-founded sets models the Axiom of Replacement ax-rep 5237. Actually, our statement is stronger, since it is an instance of Replacement only when all quantifiers in 𝑦𝜑 are relativized to 𝑊. Essentially part of Corollary II.2.5 of [Kunen2] p. 112, but note that our Replacement is different from Kunen's. (Contributed by Eric Schmidt, 29-Sep-2025.)
𝑊 = (𝑅1 “ On)       𝑥𝑊 (∀𝑤𝑊𝑦𝑊𝑧𝑊 (∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑊𝑧𝑊 (𝑧𝑦 ↔ ∃𝑤𝑊 (𝑤𝑥 ∧ ∀𝑦𝜑)))
 
Theoremwfaxsep 44992* The class of well-founded sets models the Axiom of Separation ax-sep 5254. Actually, our statement is stronger, since it is an instance of Separation only when all quantifiers in 𝜑 are relativized to 𝑊. Part of Corollary II.2.5 of [Kunen2] p. 112. (Contributed by Eric Schmidt, 29-Sep-2025.)
𝑊 = (𝑅1 “ On)       𝑧𝑊𝑦𝑊𝑥𝑊 (𝑥𝑦 ↔ (𝑥𝑧𝜑))
 
Theoremwfaxnul 44993* The class of well-founded sets models the Null Set Axiom ax-nul 5264. (Contributed by Eric Schmidt, 19-Oct-2025.)
𝑊 = (𝑅1 “ On)       𝑥𝑊𝑦𝑊 ¬ 𝑦𝑥
 
Theoremwfaxpow 44994* The class of well-founded sets models the Axioms of Power Sets. Part of Corollary II.2.9 of [Kunen2] p. 113. (Contributed by Eric Schmidt, 19-Oct-2025.)
𝑊 = (𝑅1 “ On)       𝑥𝑊𝑦𝑊𝑧𝑊 (∀𝑤𝑊 (𝑤𝑧𝑤𝑥) → 𝑧𝑦)
 
Theoremwfaxpr 44995* The class of well-founded sets models the Axiom of Pairing ax-pr 5390. Part of Corollary II.2.5 of [Kunen2] p. 112. (Contributed by Eric Schmidt, 29-Sep-2025.)
𝑊 = (𝑅1 “ On)       𝑥𝑊𝑦𝑊𝑧𝑊𝑤𝑊 ((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑧)
 
Theoremwfaxun 44996* The class of well-founded sets models the Axiom of Union ax-un 7714. Part of Corollary II.2.5 of [Kunen2] p. 112. (Contributed by Eric Schmidt, 19-Oct-2025.)
𝑊 = (𝑅1 “ On)       𝑥𝑊𝑦𝑊𝑧𝑊 (∃𝑤𝑊 (𝑧𝑤𝑤𝑥) → 𝑧𝑦)
 
Theoremwfaxreg 44997* The class of well-founded sets models the Axiom of Regularity ax-reg 9552. Part of Corollary II.2.5 of [Kunen2] p. 112. (Contributed by Eric Schmidt, 19-Oct-2025.)
𝑊 = (𝑅1 “ On)       𝑥𝑊 (∃𝑦𝑊 𝑦𝑥 → ∃𝑦𝑊 (𝑦𝑥 ∧ ∀𝑧𝑊 (𝑧𝑦 → ¬ 𝑧𝑥)))
 
Theoremwfaxinf2 44998* The class of well-founded sets models the Axiom of Infinity ax-inf2 9601. Part of Corollary II.2.12 of [Kunen2] p. 114. (Contributed by Eric Schmidt, 19-Oct-2025.)
𝑊 = (𝑅1 “ On)       𝑥𝑊 (∃𝑦𝑊 (𝑦𝑥 ∧ ∀𝑧𝑊 ¬ 𝑧𝑦) ∧ ∀𝑦𝑊 (𝑦𝑥 → ∃𝑧𝑊 (𝑧𝑥 ∧ ∀𝑤𝑊 (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))))
 
Theoremwfac8prim 44999* The class of well-founded sets 𝑊 models the Axiom of Choice. Since the previous theorems show that all the ZF axioms hold in 𝑊, we may use any statement that ZF proves is equivalent to Choice to prove this. We use ac8prim 44988. Part of Corollary II.2.12 of [Kunen2] p. 114. (Contributed by Eric Schmidt, 19-Oct-2025.)
𝑊 = (𝑅1 “ On)       𝑥𝑊 ((∀𝑧𝑊 (𝑧𝑥 → ∃𝑤𝑊 𝑤𝑧) ∧ ∀𝑧𝑊𝑤𝑊 ((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦𝑊 (𝑦𝑧 → ¬ 𝑦𝑤)))) → ∃𝑦𝑊𝑧𝑊 (𝑧𝑥 → ∃𝑤𝑊𝑣𝑊 ((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤)))
 
21.42.9  Permutation models
 
Theorembrpermmodel 45000 The membership relation in a permutation model. We use a permutation 𝐹 of the universe to define a relation 𝑅 that serves as the membership relation in our model. The conclusion of this theorem is Definition II.9.1 of [Kunen2] p. 148. All the axioms of ZFC except for Regularity hold in permutation models, and Regularity will be false if 𝐹 is chosen appropriately. Thus, permutation models can be used to show that Regularity does not follow from the other axioms (with the usual proviso that the axioms are consistent). (Contributed by Eric Schmidt, 6-Nov-2025.)
𝐹:V–1-1-onto→V    &   𝑅 = (𝐹 ∘ E )    &   𝐴 ∈ V    &   𝐵 ∈ V       (𝐴𝑅𝐵𝐴 ∈ (𝐹𝐵))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48200 483 48201-48300 484 48301-48400 485 48401-48500 486 48501-48600 487 48601-48700 488 48701-48800 489 48801-48900 490 48901-49000 491 49001-49100 492 49101-49200 493 49201-49300 494 49301-49400 495 49401-49500 496 49501-49600 497 49601-49700 498 49701-49798
  Copyright terms: Public domain < Previous  Next >