| Metamath
Proof Explorer Theorem List (p. 450 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Statement | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | e2ebindVD 44901 |
The following User's Proof is a Virtual Deduction proof (see wvd1 44559)
completed automatically by a Metamath tools program invoking mmj2 and the
Metamath Proof Assistant. e2ebind 44553 is e2ebindVD 44901 without virtual
deductions and was automatically derived from e2ebindVD 44901.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥∃𝑦𝜑 ↔ ∃𝑦𝜑)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | sb5ALTVD 44902* |
The following User's Proof is a Natural Deduction Sequent Calculus
transcription of the Fitch-style Natural Deduction proof of Unit 20
Excercise 3.a., which is sb5 2276, found in the "Answers to Starred
Exercises" on page 457 of "Understanding Symbolic Logic", Fifth
Edition (2008), by Virginia Klenk. The same proof may also be
interpreted as a Virtual Deduction Hilbert-style axiomatic proof. It
was completed automatically by the tools program completeusersproof.cmd,
which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof
Assistant. sb5ALT 44515 is sb5ALTVD 44902 without virtual deductions and
was automatically derived from sb5ALTVD 44902.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | vk15.4jVD 44903 |
The following User's Proof is a Natural Deduction Sequent Calculus
transcription of the Fitch-style Natural Deduction proof of Unit 15
Excercise 4.f. found in the "Answers to Starred Exercises" on page 442
of "Understanding Symbolic Logic", Fifth Edition (2008), by Virginia
Klenk. The same proof may also be interpreted to be a Virtual Deduction
Hilbert-style axiomatic proof. It was completed automatically by the
tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2
and Norm Megill's Metamath Proof Assistant. vk15.4j 44518 is vk15.4jVD 44903
without virtual deductions and was automatically derived
from vk15.4jVD 44903. Step numbers greater than 25 are additional steps
necessary for the sequent calculus proof not contained in the
Fitch-style proof. Otherwise, step i of the User's Proof corresponds to
step i of the Fitch-style proof.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ¬ (∃𝑥 ¬ 𝜑 ∧ ∃𝑥(𝜓 ∧ ¬ 𝜒)) & ⊢ (∀𝑥𝜒 → ¬ ∃𝑥(𝜃 ∧ 𝜏)) & ⊢ ¬ ∀𝑥(𝜏 → 𝜑) ⇒ ⊢ (¬ ∃𝑥 ¬ 𝜃 → ¬ ∀𝑥𝜓) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | notnotrALTVD 44904 |
The following User's Proof is a Natural Deduction Sequent Calculus
transcription of the Fitch-style Natural Deduction proof of Theorem 5 of
Section 14 of [Margaris] p. 59 (which is notnotr 130). The same proof
may also be interpreted as a Virtual Deduction Hilbert-style
axiomatic proof. It was completed automatically by the tools program
completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm
Megill's Metamath Proof Assistant. notnotrALT 44519 is notnotrALTVD 44904
without virtual deductions and was automatically derived
from notnotrALTVD 44904. Step i of the User's Proof corresponds to
step i of the Fitch-style proof.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (¬ ¬ 𝜑 → 𝜑) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | con3ALTVD 44905 |
The following User's Proof is a Natural Deduction Sequent Calculus
transcription of the Fitch-style Natural Deduction proof of Theorem 7 of
Section 14 of [Margaris] p. 60 (which is con3 153). The same proof may
also be interpreted to be a Virtual Deduction Hilbert-style axiomatic
proof. It was completed automatically by the tools program
completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm
Megill's Metamath Proof Assistant. con3ALT2 44520 is con3ALTVD 44905 without
virtual deductions and was automatically derived from con3ALTVD 44905.
Step i of the User's Proof corresponds to step i of the Fitch-style proof.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | elpwgdedVD 44906 | Membership in a power class. Theorem 86 of [Suppes] p. 47. Derived from elpwg 4566. In form of VD deduction with 𝜑 and 𝜓 as variable virtual hypothesis collections based on Mario Carneiro's metavariable concept. elpwgded 44554 is elpwgdedVD 44906 using conventional notation. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ( 𝜑 ▶ 𝐴 ∈ V ) & ⊢ ( 𝜓 ▶ 𝐴 ⊆ 𝐵 ) ⇒ ⊢ ( ( 𝜑 , 𝜓 ) ▶ 𝐴 ∈ 𝒫 𝐵 ) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | sspwimp 44907 | If a class is a subclass of another class, then its power class is a subclass of that other class's power class. Left-to-right implication of Exercise 18 of [TakeutiZaring] p. 18. For the biconditional, see sspwb 5409. The proof sspwimp 44907, using conventional notation, was translated from virtual deduction form, sspwimpVD 44908, using a translation program. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | sspwimpVD 44908 |
The following User's Proof is a Virtual Deduction proof (see wvd1 44559)
using conjunction-form virtual hypothesis collections. It was completed
manually, but has the potential to be completed automatically by a tools
program which would invoke Mel L. O'Cat's mmj2 and Norm Megill's
Metamath Proof Assistant.
sspwimp 44907 is sspwimpVD 44908 without virtual deductions and was derived
from sspwimpVD 44908. (Contributed by Alan Sare, 23-Apr-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | sspwimpcf 44909 | If a class is a subclass of another class, then its power class is a subclass of that other class's power class. Left-to-right implication of Exercise 18 of [TakeutiZaring] p. 18. sspwimpcf 44909, using conventional notation, was translated from its virtual deduction form, sspwimpcfVD 44910, using a translation program. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | sspwimpcfVD 44910 |
The following User's Proof is a Virtual Deduction proof (see wvd1 44559)
using conjunction-form virtual hypothesis collections. It was completed
automatically by a tools program which would invokes Mel L. O'Cat's mmj2
and Norm Megill's Metamath Proof Assistant.
sspwimpcf 44909 is sspwimpcfVD 44910 without virtual deductions and was derived
from sspwimpcfVD 44910.
The version of completeusersproof.cmd used is capable of only generating
conjunction-form unification theorems, not unification deductions.
(Contributed by Alan Sare, 13-Jun-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | suctrALTcf 44911 | The successor of a transitive class is transitive. suctrALTcf 44911, using conventional notation, was translated from virtual deduction form, suctrALTcfVD 44912, using a translation program. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (Tr 𝐴 → Tr suc 𝐴) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | suctrALTcfVD 44912 |
The following User's Proof is a Virtual Deduction proof (see wvd1 44559)
using conjunction-form virtual hypothesis collections. The
conjunction-form version of completeusersproof.cmd. It allows the User
to avoid superflous virtual hypotheses. This proof was completed
automatically by a tools program which invokes Mel L. O'Cat's
mmj2 and Norm Megill's Metamath Proof Assistant. suctrALTcf 44911
is suctrALTcfVD 44912 without virtual deductions and was derived
automatically from suctrALTcfVD 44912. The version of
completeusersproof.cmd used is capable of only generating
conjunction-form unification theorems, not unification deductions.
(Contributed by Alan Sare, 13-Jun-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (Tr 𝐴 → Tr suc 𝐴) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | suctrALT3 44913 | The successor of a transitive class is transitive. suctrALT3 44913 is the completed proof in conventional notation of the Virtual Deduction proof https://us.metamath.org/other/completeusersproof/suctralt3vd.html 44913. It was completed manually. The potential for automated derivation from the VD proof exists. See wvd1 44559 for a description of Virtual Deduction. Some sub-theorems of the proof were completed using a unification deduction (e.g., the sub-theorem whose assertion is step 19 used jaoded 44556). Unification deductions employ Mario Carneiro's metavariable concept. Some sub-theorems were completed using a unification theorem (e.g., the sub-theorem whose assertion is step 24 used dftr2 5216) . (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (Tr 𝐴 → Tr suc 𝐴) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | sspwimpALT 44914 | If a class is a subclass of another class, then its power class is a subclass of that other class's power class. Left-to-right implication of Exercise 18 of [TakeutiZaring] p. 18. sspwimpALT 44914 is the completed proof in conventional notation of the Virtual Deduction proof https://us.metamath.org/other/completeusersproof/sspwimpaltvd.html 44914. It was completed manually. The potential for automated derivation from the VD proof exists. See wvd1 44559 for a description of Virtual Deduction. Some sub-theorems of the proof were completed using a unification deduction (e.g., the sub-theorem whose assertion is step 9 used elpwgded 44554). Unification deductions employ Mario Carneiro's metavariable concept. Some sub-theorems were completed using a unification theorem (e.g., the sub-theorem whose assertion is step 5 used elpwi 4570). (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | unisnALT 44915 | A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. The User manually input on a mmj2 Proof Worksheet, without labels, all steps of unisnALT 44915 except 1, 11, 15, 21, and 30. With execution of the mmj2 unification command, mmj2 could find labels for all steps except for 2, 12, 16, 22, and 31 (and the then non-existing steps 1, 11, 15, 21, and 30). mmj2 could not find reference theorems for those five steps because the hypothesis field of each of these steps was empty and none of those steps unifies with a theorem in set.mm. Each of these five steps is a semantic variation of a theorem in set.mm and is 2-step provable. mmj2 does not have the ability to automatically generate the semantic variation in set.mm of a theorem in a mmj2 Proof Worksheet unless the theorem in the Proof Worksheet is labeled with a 1-hypothesis deduction whose hypothesis is a theorem in set.mm which unifies with the theorem in the Proof Worksheet. The stepprover.c program, which invokes mmj2, has this capability. stepprover.c automatically generated steps 1, 11, 15, 21, and 30, labeled all steps, and generated the RPN proof of unisnALT 44915. Roughly speaking, stepprover.c added to the Proof Worksheet a labeled duplicate step of each non-unifying theorem for each label in a text file, labels.txt, containing a list of labels provided by the User. Upon mmj2 unification, stepprover.c identified a label for each of the five theorems which 2-step proves it. For unisnALT 44915, the label list is a list of all 1-hypothesis propositional calculus deductions in set.mm. stepproverp.c is the same as stepprover.c except that it intermittently pauses during execution, allowing the User to observe the changes to a text file caused by the execution of particular statements of the program. (Contributed by Alan Sare, 19-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 ∈ V ⇒ ⊢ ∪ {𝐴} = 𝐴 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorems with a proof in conventional notation automatically derived by completeusersproof.c from a Virtual Deduction User's Proof. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | notnotrALT2 44916 | Converse of double negation. Theorem *2.14 of [WhiteheadRussell] p. 102. Proof derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (¬ ¬ 𝜑 → 𝜑) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | sspwimpALT2 44917 | If a class is a subclass of another class, then its power class is a subclass of that other class's power class. Left-to-right implication of Exercise 18 of [TakeutiZaring] p. 18. Proof derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in https://us.metamath.org/other/completeusersproof/sspwimpaltvd.html. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | e2ebindALT 44918 | Absorption of an existential quantifier of a double existential quantifier of non-distinct variables. The proof is derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in e2ebindVD 44901. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥∃𝑦𝜑 ↔ ∃𝑦𝜑)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | ax6e2ndALT 44919* | If at least two sets exist (dtru 5396), then the same is true expressed in an alternate form similar to the form of ax6e 2381. The proof is derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in ax6e2ndVD 44897. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | ax6e2ndeqALT 44920* | "At least two sets exist" expressed in the form of dtru 5396 is logically equivalent to the same expressed in a form similar to ax6e 2381 if dtru 5396 is false implies 𝑢 = 𝑣. Proof derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in ax6e2ndeqVD 44898. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) ↔ ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | 2sb5ndALT 44921* | Equivalence for double substitution 2sb5 2278 without distinct 𝑥, 𝑦 requirement. 2sb5nd 44550 is derived from 2sb5ndVD 44899. The proof is derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in 2sb5ndVD 44899. (Contributed by Alan Sare, 19-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | chordthmALT 44922* | The intersecting chords theorem. If points A, B, C, and D lie on a circle (with center Q, say), and the point P is on the interior of the segments AB and CD, then the two products of lengths PA · PB and PC · PD are equal. The Euclidean plane is identified with the complex plane, and the fact that P is on AB and on CD is expressed by the hypothesis that the angles APB and CPD are equal to π. The result is proven by using chordthmlem5 26746 twice to show that PA · PB and PC · PD both equal BQ 2 − PQ 2 . This is similar to the proof of the theorem given in Euclid's Elements, where it is Proposition III.35. Proven by David Moews on 28-Feb-2017 as chordthm 26747. https://us.metamath.org/other/completeusersproof/chordthmaltvd.html 26747 is a Virtual Deduction User's Proof transcription of chordthm 26747. That VD User's Proof was input into completeusersproof, automatically generating this chordthmALT 44922 Metamath proof. (Contributed by Alan Sare, 19-Sep-2017.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑃 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝑃) & ⊢ (𝜑 → 𝐵 ≠ 𝑃) & ⊢ (𝜑 → 𝐶 ≠ 𝑃) & ⊢ (𝜑 → 𝐷 ≠ 𝑃) & ⊢ (𝜑 → ((𝐴 − 𝑃)𝐹(𝐵 − 𝑃)) = π) & ⊢ (𝜑 → ((𝐶 − 𝑃)𝐹(𝐷 − 𝑃)) = π) & ⊢ (𝜑 → 𝑄 ∈ ℂ) & ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) & ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐶 − 𝑄))) & ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐷 − 𝑄))) ⇒ ⊢ (𝜑 → ((abs‘(𝑃 − 𝐴)) · (abs‘(𝑃 − 𝐵))) = ((abs‘(𝑃 − 𝐶)) · (abs‘(𝑃 − 𝐷)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | isosctrlem1ALT 44923 | Lemma for isosctr 26731. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart https://us.metamath.org/other/completeusersproof/isosctrlem1altvd.html 26731. As it is verified by the Metamath program, isosctrlem1ALT 44923 verifies https://us.metamath.org/other/completeusersproof/isosctrlem1altvd.html 44923. (Contributed by Alan Sare, 22-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≠ π) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | iunconnlem2 44924* | The indexed union of connected overlapping subspaces sharing a common point is connected. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart https://us.metamath.org/other/completeusersproof/iunconlem2vd.html. As it is verified by the Metamath program, iunconnlem2 44924 verifies https://us.metamath.org/other/completeusersproof/iunconlem2vd.html 44924. (Contributed by Alan Sare, 22-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝜓 ↔ ((((((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑣 ∈ 𝐽) ∧ (𝑢 ∩ ∪ 𝑘 ∈ 𝐴 𝐵) ≠ ∅) ∧ (𝑣 ∩ ∪ 𝑘 ∈ 𝐴 𝐵) ≠ ∅) ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪ 𝑘 ∈ 𝐴 𝐵)) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣))) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ 𝑋) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐽 ↾t 𝐵) ∈ Conn) ⇒ ⊢ (𝜑 → (𝐽 ↾t ∪ 𝑘 ∈ 𝐴 𝐵) ∈ Conn) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | iunconnALT 44925* | The indexed union of connected overlapping subspaces sharing a common point is connected. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart https://us.metamath.org/other/completeusersproof/iunconaltvd.html. As it is verified by the Metamath program, iunconnALT 44925 verifies https://us.metamath.org/other/completeusersproof/iunconaltvd.html 44925. (Contributed by Alan Sare, 22-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ 𝑋) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐽 ↾t 𝐵) ∈ Conn) ⇒ ⊢ (𝜑 → (𝐽 ↾t ∪ 𝑘 ∈ 𝐴 𝐵) ∈ Conn) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | sineq0ALT 44926 | A complex number whose sine is zero is an integer multiple of π. The Virtual Deduction form of the proof is https://us.metamath.org/other/completeusersproof/sineq0altvd.html. The Metamath form of the proof is sineq0ALT 44926. The Virtual Deduction proof is based on Mario Carneiro's revision of Norm Megill's proof of sineq0 26433. The Virtual Deduction proof is verified by automatically transforming it into the Metamath form of the proof using completeusersproof, which is verified by the Metamath program. The proof of https://us.metamath.org/other/completeusersproof/sineq0altro.html 26433 is a form of the completed proof which preserves the Virtual Deduction proof's step numbers and their ordering. (Contributed by Alan Sare, 13-Jun-2018.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (𝐴 / π) ∈ ℤ)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | rspesbcd 44927* | Restricted quantifier version of spesbcd 3846. (Contributed by Eric Schmidt, 29-Sep-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | rext0 44928* | Nonempty existential quantification of a theorem is true. (Contributed by Eric Schmidt, 19-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝜑 ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ 𝐴 ≠ ∅) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | dfbi1ALTa 44929 | Version of dfbi1ALT 214 using ⊤ for step 2 and shortened using a1i 11, a2i 14, and con4i 114. (Contributed by Eric Schmidt, 22-Oct-2025.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | simprimi 44930 | Inference associated with simprim 166. Proved exactly as step 11 is obtained from step 4 in dfbi1ALTa 44929. (Contributed by Eric Schmidt, 22-Oct-2025.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ¬ (𝜑 → ¬ 𝜓) ⇒ ⊢ 𝜓 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | dfbi1ALTb 44931 | Further shorten dfbi1ALTa 44929 using simprimi 44930. (Contributed by Eric Schmidt, 22-Oct-2025.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Syntax | wrelp 44932 | Extend the definition of a wff to include the relation-preserving property. (Contributed by Eric Schmidt, 11-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| wff 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Definition | df-relp 44933* | Define the relation-preserving predicate. This is a viable notion of "homomorphism" corresponding to df-isom 6520. (Contributed by Eric Schmidt, 11-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ (𝐻:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | relpeq1 44934 | Equality theorem for relation-preserving functions. (Contributed by Eric Schmidt, 11-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝐻 = 𝐺 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐺 RelPres 𝑅, 𝑆(𝐴, 𝐵))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | relpeq2 44935 | Equality theorem for relation-preserving functions. (Contributed by Eric Schmidt, 11-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑅 = 𝑇 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑇, 𝑆(𝐴, 𝐵))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | relpeq3 44936 | Equality theorem for relation-preserving functions. (Contributed by Eric Schmidt, 11-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑆 = 𝑇 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑅, 𝑇(𝐴, 𝐵))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | relpeq4 44937 | Equality theorem for relation-preserving functions. (Contributed by Eric Schmidt, 11-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝐴 = 𝐶 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑅, 𝑆(𝐶, 𝐵))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | relpeq5 44938 | Equality theorem for relation-preserving functions. (Contributed by Eric Schmidt, 11-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝐵 = 𝐶 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐶))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | nfrelp 44939 | Bound-variable hypothesis builder for a relation-preserving function. (Contributed by Eric Schmidt, 11-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ Ⅎ𝑥𝐻 & ⊢ Ⅎ𝑥𝑅 & ⊢ Ⅎ𝑥𝑆 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | relpf 44940 | A relation-preserving function is a function. (Contributed by Eric Schmidt, 11-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → 𝐻:𝐴⟶𝐵) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | relprel 44941 | A relation-preserving function preserves the relation. (Contributed by Eric Schmidt, 11-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶𝑅𝐷 → (𝐻‘𝐶)𝑆(𝐻‘𝐷))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | relpmin 44942 | A preimage of a minimal element under a relation-preserving function is minimal. Essentially one half of isomin 7312. (Contributed by Eric Schmidt, 11-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) = ∅ → (𝐶 ∩ (◡𝑅 “ {𝐷})) = ∅)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | relpfrlem 44943* | Lemma for relpfr 44944. Proved without using the Axiom of Replacement. This is isofrlem 7315 with weaker hypotheses. (Contributed by Eric Schmidt, 11-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵)) & ⊢ (𝜑 → (𝐻 “ 𝑥) ∈ V) ⇒ ⊢ (𝜑 → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | relpfr 44944 | If the image of a set under a relation-preserving function is well-founded, so is the set. See isofr 7317 for a bidirectional statement. A more general version of Lemma I.9.9 of [Kunen2] p. 47. (Contributed by Eric Schmidt, 11-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | orbitex 44945 | Orbits exist. Given a set 𝐴 and a function 𝐹, the orbit of 𝐴 under 𝐹 is the smallest set 𝑍 such that 𝐴 ∈ 𝑍 and 𝑍 is closed under 𝐹. (Contributed by Eric Schmidt, 6-Nov-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (rec(𝐹, 𝐴) “ ω) ∈ V | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | orbitinit 44946 | A set is contained in its orbit. (Contributed by Eric Schmidt, 6-Nov-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ (rec(𝐹, 𝐴) “ ω)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | orbitcl 44947 | The orbit under a function is closed under the function. (Contributed by Eric Schmidt, 6-Nov-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝐵 ∈ (rec(𝐹, 𝐴) “ ω) → (𝐹‘𝐵) ∈ (rec(𝐹, 𝐴) “ ω)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | orbitclmpt 44948 | Version of orbitcl 44947 using maps-to notation. (Contributed by Eric Schmidt, 6-Nov-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝐷 & ⊢ 𝑍 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) “ ω) & ⊢ (𝑥 = 𝐵 → 𝐶 = 𝐷) ⇒ ⊢ ((𝐵 ∈ 𝑍 ∧ 𝐷 ∈ 𝑉) → 𝐷 ∈ 𝑍) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | trwf 44949 | The class of well-founded sets is transitive. (Contributed by Eric Schmidt, 9-Sep-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ Tr ∪ (𝑅1 “ On) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | rankrelp 44950 | The rank function preserves ∈. (Contributed by Eric Schmidt, 11-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ rank RelPres E , E (∪ (𝑅1 “ On), On) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | wffr 44951 | The class of well-founded sets is well-founded. Lemma I.9.24(2) of [Kunen2] p. 53. (Contributed by Eric Schmidt, 11-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ E Fr ∪ (𝑅1 “ On) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | trfr 44952 | A transitive class well-founded by ∈ is a subclass of the class of well-founded sets. Part of Lemma I.9.21 of [Kunen2] p. 53. (Contributed by Eric Schmidt, 26-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((Tr 𝐴 ∧ E Fr 𝐴) → 𝐴 ⊆ ∪ (𝑅1 “ On)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | tcfr 44953 | A set is well-founded if and only if its transitive closure is well-founded by ∈. This characterization of well-founded sets is that in Definition I.9.20 of [Kunen2] p. 53. (Contributed by Eric Schmidt, 26-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ E Fr (TC‘𝐴)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | xpwf 44954 | The Cartesian product of two well-founded sets is well-founded. (Contributed by Eric Schmidt, 12-Sep-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → (𝐴 × 𝐵) ∈ ∪ (𝑅1 “ On)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | dmwf 44955 | The domain of a well-founded set is well-founded. (Contributed by Eric Schmidt, 12-Sep-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → dom 𝐴 ∈ ∪ (𝑅1 “ On)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | rnwf 44956 | The range of a well-founded set is well-founded. (Contributed by Eric Schmidt, 12-Sep-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ran 𝐴 ∈ ∪ (𝑅1 “ On)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | relwf 44957 | A relation is a well-founded set iff its domain and range are. (Contributed by Eric Schmidt, 29-Sep-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (Rel 𝑅 → (𝑅 ∈ ∪ (𝑅1 “ On) ↔ (dom 𝑅 ∈ ∪ (𝑅1 “ On) ∧ ran 𝑅 ∈ ∪ (𝑅1 “ On)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | ralabso 44958* | Simplification of restricted quantification in a transitive class. When 𝜑 is quantifier-free, this shows that the formula ∀𝑥 ∈ 𝑦𝜑 is absolute for transitive models, which is a particular case of Lemma I.16.2 of [Kunen2] p. 95. (Contributed by Eric Schmidt, 19-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((Tr 𝑀 ∧ 𝐴 ∈ 𝑀) → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 → 𝜑))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | rexabso 44959* | Simplification of restricted quantification in a transitive class. When 𝜑 is quantifier-free, this shows that the formula ∃𝑥 ∈ 𝑦𝜑 is absolute for transitive models, which is a particular case of Lemma I.16.2 of [Kunen2] p. 95. (Contributed by Eric Schmidt, 19-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((Tr 𝑀 ∧ 𝐴 ∈ 𝑀) → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 ∧ 𝜑))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | ralabsod 44960* | Deduction form of ralabso 44958. (Contributed by Eric Schmidt, 19-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → Tr 𝑀) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑀) → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 → 𝜓))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | rexabsod 44961* | Deduction form of rexabso 44959. (Contributed by Eric Schmidt, 19-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → Tr 𝑀) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑀) → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 ∧ 𝜓))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | ralabsobidv 44962* | Formula-building lemma for proving absoluteness results. (Contributed by Eric Schmidt, 19-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → Tr 𝑀) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑀) → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 → 𝜒))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | rexabsobidv 44963* | Formula-building lemma for proving absoluteness results. (Contributed by Eric Schmidt, 19-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → Tr 𝑀) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑀) → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 ∧ 𝜒))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | ssabso 44964* | The notion "𝑥 is a subset of 𝑦 " is absolute for transitive models. Compare Example I.16.3 of [Kunen2] p. 96 and the following discussion. (Contributed by Eric Schmidt, 19-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((Tr 𝑀 ∧ 𝐴 ∈ 𝑀) → (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | disjabso 44965* | Disjointness is absolute for transitive models. Compare Example I.16.3 of [Kunen2] p. 96 and the following discussion. (Contributed by Eric Schmidt, 19-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((Tr 𝑀 ∧ 𝐴 ∈ 𝑀) → ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | n0abso 44966* | Nonemptiness is absolute for transitive models. Compare Example I.16.3 of [Kunen2] p. 96 and the following discussion. (Contributed by Eric Schmidt, 19-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((Tr 𝑀 ∧ 𝐴 ∈ 𝑀) → (𝐴 ≠ ∅ ↔ ∃𝑥 ∈ 𝑀 𝑥 ∈ 𝐴)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | traxext 44967* | A transitive class models the Axiom of Extensionality ax-ext 2701. Lemma II.2.4(1) of [Kunen2] p. 111. (Contributed by Eric Schmidt, 11-Sep-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (Tr 𝑀 → ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | modelaxreplem1 44968* | Lemma for modelaxrep 44971. We show that 𝑀 is closed under taking subsets. (Contributed by Eric Schmidt, 29-Sep-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝜓 → 𝑥 ⊆ 𝑀) & ⊢ (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓 ∈ 𝑀 ∧ ran 𝑓 ⊆ 𝑀) → ran 𝑓 ∈ 𝑀)) & ⊢ (𝜓 → ∅ ∈ 𝑀) & ⊢ (𝜓 → 𝑥 ∈ 𝑀) & ⊢ 𝐴 ⊆ 𝑥 ⇒ ⊢ (𝜓 → 𝐴 ∈ 𝑀) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | modelaxreplem2 44969* | Lemma for modelaxrep 44971. We define a class 𝐹 and show that the antecedent of Replacement implies that 𝐹 is a function. We use Replacement (in the form of funex 7193) to show that 𝐹 exists. Then we show that, under our hypotheses, the range of 𝐹 is a member of 𝑀. (Contributed by Eric Schmidt, 29-Sep-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝜓 → 𝑥 ⊆ 𝑀) & ⊢ (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓 ∈ 𝑀 ∧ ran 𝑓 ⊆ 𝑀) → ran 𝑓 ∈ 𝑀)) & ⊢ (𝜓 → ∅ ∈ 𝑀) & ⊢ (𝜓 → 𝑥 ∈ 𝑀) & ⊢ Ⅎ𝑤𝜓 & ⊢ Ⅎ𝑧𝜓 & ⊢ Ⅎ𝑧𝐹 & ⊢ 𝐹 = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ 𝑥 ∧ (𝑧 ∈ 𝑀 ∧ ∀𝑦𝜑))} & ⊢ (𝜓 → (𝑤 ∈ 𝑀 → ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 (∀𝑦𝜑 → 𝑧 = 𝑦))) ⇒ ⊢ (𝜓 → ran 𝐹 ∈ 𝑀) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | modelaxreplem3 44970* | Lemma for modelaxrep 44971. We show that the consequent of Replacement is satisfied with ran 𝐹 as the value of 𝑦. (Contributed by Eric Schmidt, 29-Sep-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝜓 → 𝑥 ⊆ 𝑀) & ⊢ (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓 ∈ 𝑀 ∧ ran 𝑓 ⊆ 𝑀) → ran 𝑓 ∈ 𝑀)) & ⊢ (𝜓 → ∅ ∈ 𝑀) & ⊢ (𝜓 → 𝑥 ∈ 𝑀) & ⊢ Ⅎ𝑤𝜓 & ⊢ Ⅎ𝑧𝜓 & ⊢ Ⅎ𝑧𝐹 & ⊢ 𝐹 = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ 𝑥 ∧ (𝑧 ∈ 𝑀 ∧ ∀𝑦𝜑))} & ⊢ (𝜓 → (𝑤 ∈ 𝑀 → ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 (∀𝑦𝜑 → 𝑧 = 𝑦))) ⇒ ⊢ (𝜓 → ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑀 (𝑤 ∈ 𝑥 ∧ ∀𝑦𝜑))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | modelaxrep 44971* |
Conditions which guarantee that a class models the Axiom of Replacement
ax-rep 5234. Similar to Lemma II.2.4(6) of [Kunen2] p. 111. The first
two hypotheses are those in Kunen. The reason for the third hypothesis
that our version of Replacement is different from Kunen's (which is
zfrep6 7933). If we assumed Regularity, we could
eliminate this extra
hypothesis, since under Regularity, the empty set is a member of every
non-empty transitive class.
Note that, to obtain the relativization of an instance of Replacement to 𝑀, the formula ∀𝑦𝜑 would need to be replaced with ∀𝑦 ∈ 𝑀𝜒, where 𝜒 is 𝜑 with all quantifiers relativized to 𝑀. However, we can obtain this by using 𝑦 ∈ 𝑀 ∧ 𝜒 for 𝜑 in this theorem, so it does establish that all instances of Replacement hold in 𝑀. (Contributed by Eric Schmidt, 29-Sep-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝜓 → Tr 𝑀) & ⊢ (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓 ∈ 𝑀 ∧ ran 𝑓 ⊆ 𝑀) → ran 𝑓 ∈ 𝑀)) & ⊢ (𝜓 → ∅ ∈ 𝑀) ⇒ ⊢ (𝜓 → ∀𝑥 ∈ 𝑀 (∀𝑤 ∈ 𝑀 ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 (∀𝑦𝜑 → 𝑧 = 𝑦) → ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑀 (𝑤 ∈ 𝑥 ∧ ∀𝑦𝜑)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | ssclaxsep 44972* |
A class that is closed under subsets models the Axiom of Separation
ax-sep 5251. Lemma II.2.4(3) of [Kunen2] p. 111.
Note that, to obtain the relativization of an instance of Separation to 𝑀, the formula 𝜑 would need to be replaced with its relativization to 𝑀. However, this new formula is a valid substitution for 𝜑, so this theorem does establish that all instances of Separation hold in 𝑀. (Contributed by Eric Schmidt, 29-Sep-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (∀𝑧 ∈ 𝑀 𝒫 𝑧 ⊆ 𝑀 → ∀𝑧 ∈ 𝑀 ∃𝑦 ∈ 𝑀 ∀𝑥 ∈ 𝑀 (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | 0elaxnul 44973* | A class that contains the empty set models the Null Set Axiom ax-nul 5261. (Contributed by Eric Schmidt, 19-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (∅ ∈ 𝑀 → ∃𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ¬ 𝑦 ∈ 𝑥) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | pwclaxpow 44974* | Suppose 𝑀 is a transitive class that is closed under power sets intersected with 𝑀. Then, 𝑀 models the Axiom of Power Sets ax-pow 5320. One direction of Lemma II.2.8 of [Kunen2] p. 113. (Contributed by Eric Schmidt, 19-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((Tr 𝑀 ∧ ∀𝑥 ∈ 𝑀 (𝒫 𝑥 ∩ 𝑀) ∈ 𝑀) → ∀𝑥 ∈ 𝑀 ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 (∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | prclaxpr 44975* | A class that is closed under the pairing operation models the Axiom of Pairing ax-pr 5387. Lemma II.2.4(4) of [Kunen2] p. 111. (Contributed by Eric Schmidt, 29-Sep-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 {𝑥, 𝑦} ∈ 𝑀 → ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∃𝑧 ∈ 𝑀 ∀𝑤 ∈ 𝑀 ((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | uniclaxun 44976* | A class that is closed under the union operation models the Axiom of Union ax-un 7711. Lemma II.2.4(5) of [Kunen2] p. 111. (Contributed by Eric Schmidt, 1-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (∀𝑥 ∈ 𝑀 ∪ 𝑥 ∈ 𝑀 → ∀𝑥 ∈ 𝑀 ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 (∃𝑤 ∈ 𝑀 (𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | sswfaxreg 44977* | A subclass of the class of well-founded sets models the Axiom of Regularity ax-reg 9545. Lemma II.2.4(2) of [Kunen2] p. 111. (Contributed by Eric Schmidt, 19-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑀 ⊆ ∪ (𝑅1 “ On) → ∀𝑥 ∈ 𝑀 (∃𝑦 ∈ 𝑀 𝑦 ∈ 𝑥 → ∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | omssaxinf2 44978* | A class that contains all ordinals up to and including ω models the Axiom of Infinity ax-inf2 9594. The antecedent of this theorem is not enough to guarantee that the class models the alternate axiom ax-inf 9591. (Contributed by Eric Schmidt, 19-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((ω ⊆ 𝑀 ∧ ω ∈ 𝑀) → ∃𝑥 ∈ 𝑀 (∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 → ∃𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 ∧ ∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | omelaxinf2 44979* |
A transitive class that contains ω models the
Axiom of Infinity
ax-inf2 9594. Lemma II.2.11(7) of [Kunen2] p. 114. Kunen has the
additional hypotheses that the Extensionality, Separation, Pairing, and
Union axioms are true in 𝑀. This, apparently, is because
Kunen's
statement of the Axiom of Infinity uses the defined notions ∅ and
suc, and these axioms guarantee that these
notions are
well-defined. When we state the axiom using primitives only, the need
for these hypotheses disappears.
The antecedent of this theorem is not enough to guarantee that the class models the alternate axiom ax-inf 9591. (Contributed by Eric Schmidt, 19-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((Tr 𝑀 ∧ ω ∈ 𝑀) → ∃𝑥 ∈ 𝑀 (∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 → ∃𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 ∧ ∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | dfac5prim 44980* | dfac5 10082 expanded into primitives. (Contributed by Eric Schmidt, 19-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (CHOICE ↔ ∀𝑥((∀𝑧(𝑧 ∈ 𝑥 → ∃𝑤 𝑤 ∈ 𝑧) ∧ ∀𝑧∀𝑤((𝑧 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦(𝑦 ∈ 𝑧 → ¬ 𝑦 ∈ 𝑤)))) → ∃𝑦∀𝑧(𝑧 ∈ 𝑥 → ∃𝑤∀𝑣((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) ↔ 𝑣 = 𝑤)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | ac8prim 44981* | ac8 10445 expanded into primitives. (Contributed by Eric Schmidt, 19-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((∀𝑧(𝑧 ∈ 𝑥 → ∃𝑤 𝑤 ∈ 𝑧) ∧ ∀𝑧∀𝑤((𝑧 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦(𝑦 ∈ 𝑧 → ¬ 𝑦 ∈ 𝑤)))) → ∃𝑦∀𝑧(𝑧 ∈ 𝑥 → ∃𝑤∀𝑣((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) ↔ 𝑣 = 𝑤))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | modelac8prim 44982* |
If 𝑀 is a transitive class, then the
following are equivalent. (1)
Every nonempty set 𝑥 ∈ 𝑀 of pairwise disjoint nonempty sets
has a
choice set in 𝑀. (2) The class 𝑀 models
the Axiom of Choice,
in the form ac8prim 44981.
Lemma II.2.11(7) of [Kunen2] p. 114. Kunen has the additional hypotheses that the Extensionality, Separation, Pairing, and Union axioms are true in 𝑀. This, apparently, is because Kunen's statement of the Axiom of Choice uses defined notions, including ∅ and ∩, and these axioms guarantee that these notions are well-defined. When we state the axiom using primitives only, the need for these hypotheses disappears. (Contributed by Eric Schmidt, 19-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (Tr 𝑀 → (∀𝑥 ∈ 𝑀 ((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) ↔ ∀𝑥 ∈ 𝑀 ((∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 → ∃𝑤 ∈ 𝑀 𝑤 ∈ 𝑧) ∧ ∀𝑧 ∈ 𝑀 ∀𝑤 ∈ 𝑀 ((𝑧 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦 ∈ 𝑀 (𝑦 ∈ 𝑧 → ¬ 𝑦 ∈ 𝑤)))) → ∃𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 → ∃𝑤 ∈ 𝑀 ∀𝑣 ∈ 𝑀 ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) ↔ 𝑣 = 𝑤))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | wfaxext 44983* |
The class of well-founded sets models the Axiom of Extensionality
ax-ext 2701. Part of Corollary II.2.5 of [Kunen2] p. 112.
This is the first of a series of theorems showing that all the axioms of ZFC hold in the class of well-founded sets, which we here denote by 𝑊. More precisely, for each axiom of ZFC, we obtain a provable statement if we restrict all quantifiers to 𝑊 (including implicit universal quantifiers on free variables). None of these proofs use the Axiom of Regularity. In particular, the Axiom of Regularity itself is proved to hold in 𝑊 without using Regularity. Further, the Axiom of Choice is used only in the proof that Choice holds in 𝑊. This has the consequence that any theorem of ZF (possibly proved using Regularity) can be proved, without using Regularity, to hold in 𝑊. This gives us a relative consistency result: If ZF without Regularity is consistent, so is ZF itself. Similarly, if ZFC without Regularity is consistent, so is ZFC itself. These consistency results are metatheorems and are part of Theorem II.2.13 of [Kunen2] p. 114. (Contributed by Eric Schmidt, 11-Sep-2025.) (Revised by Eric Schmidt, 29-Sep-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑊 = ∪ (𝑅1 “ On) ⇒ ⊢ ∀𝑥 ∈ 𝑊 ∀𝑦 ∈ 𝑊 (∀𝑧 ∈ 𝑊 (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | wfaxrep 44984* | The class of well-founded sets models the Axiom of Replacement ax-rep 5234. Actually, our statement is stronger, since it is an instance of Replacement only when all quantifiers in ∀𝑦𝜑 are relativized to 𝑊. Essentially part of Corollary II.2.5 of [Kunen2] p. 112, but note that our Replacement is different from Kunen's. (Contributed by Eric Schmidt, 29-Sep-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑊 = ∪ (𝑅1 “ On) ⇒ ⊢ ∀𝑥 ∈ 𝑊 (∀𝑤 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (∀𝑦𝜑 → 𝑧 = 𝑦) → ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑊 (𝑤 ∈ 𝑥 ∧ ∀𝑦𝜑))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | wfaxsep 44985* | The class of well-founded sets models the Axiom of Separation ax-sep 5251. Actually, our statement is stronger, since it is an instance of Separation only when all quantifiers in 𝜑 are relativized to 𝑊. Part of Corollary II.2.5 of [Kunen2] p. 112. (Contributed by Eric Schmidt, 29-Sep-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑊 = ∪ (𝑅1 “ On) ⇒ ⊢ ∀𝑧 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑥 ∈ 𝑊 (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | wfaxnul 44986* | The class of well-founded sets models the Null Set Axiom ax-nul 5261. (Contributed by Eric Schmidt, 19-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑊 = ∪ (𝑅1 “ On) ⇒ ⊢ ∃𝑥 ∈ 𝑊 ∀𝑦 ∈ 𝑊 ¬ 𝑦 ∈ 𝑥 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | wfaxpow 44987* | The class of well-founded sets models the Axioms of Power Sets. Part of Corollary II.2.9 of [Kunen2] p. 113. (Contributed by Eric Schmidt, 19-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑊 = ∪ (𝑅1 “ On) ⇒ ⊢ ∀𝑥 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (∀𝑤 ∈ 𝑊 (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | wfaxpr 44988* | The class of well-founded sets models the Axiom of Pairing ax-pr 5387. Part of Corollary II.2.5 of [Kunen2] p. 112. (Contributed by Eric Schmidt, 29-Sep-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑊 = ∪ (𝑅1 “ On) ⇒ ⊢ ∀𝑥 ∈ 𝑊 ∀𝑦 ∈ 𝑊 ∃𝑧 ∈ 𝑊 ∀𝑤 ∈ 𝑊 ((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | wfaxun 44989* | The class of well-founded sets models the Axiom of Union ax-un 7711. Part of Corollary II.2.5 of [Kunen2] p. 112. (Contributed by Eric Schmidt, 19-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑊 = ∪ (𝑅1 “ On) ⇒ ⊢ ∀𝑥 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (∃𝑤 ∈ 𝑊 (𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | wfaxreg 44990* | The class of well-founded sets models the Axiom of Regularity ax-reg 9545. Part of Corollary II.2.5 of [Kunen2] p. 112. (Contributed by Eric Schmidt, 19-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑊 = ∪ (𝑅1 “ On) ⇒ ⊢ ∀𝑥 ∈ 𝑊 (∃𝑦 ∈ 𝑊 𝑦 ∈ 𝑥 → ∃𝑦 ∈ 𝑊 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑊 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | wfaxinf2 44991* | The class of well-founded sets models the Axiom of Infinity ax-inf2 9594. Part of Corollary II.2.12 of [Kunen2] p. 114. (Contributed by Eric Schmidt, 19-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑊 = ∪ (𝑅1 “ On) ⇒ ⊢ ∃𝑥 ∈ 𝑊 (∃𝑦 ∈ 𝑊 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑊 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦 ∈ 𝑊 (𝑦 ∈ 𝑥 → ∃𝑧 ∈ 𝑊 (𝑧 ∈ 𝑥 ∧ ∀𝑤 ∈ 𝑊 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | wfac8prim 44992* | The class of well-founded sets 𝑊 models the Axiom of Choice. Since the previous theorems show that all the ZF axioms hold in 𝑊, we may use any statement that ZF proves is equivalent to Choice to prove this. We use ac8prim 44981. Part of Corollary II.2.12 of [Kunen2] p. 114. (Contributed by Eric Schmidt, 19-Oct-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑊 = ∪ (𝑅1 “ On) ⇒ ⊢ ∀𝑥 ∈ 𝑊 ((∀𝑧 ∈ 𝑊 (𝑧 ∈ 𝑥 → ∃𝑤 ∈ 𝑊 𝑤 ∈ 𝑧) ∧ ∀𝑧 ∈ 𝑊 ∀𝑤 ∈ 𝑊 ((𝑧 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦 ∈ 𝑊 (𝑦 ∈ 𝑧 → ¬ 𝑦 ∈ 𝑤)))) → ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (𝑧 ∈ 𝑥 → ∃𝑤 ∈ 𝑊 ∀𝑣 ∈ 𝑊 ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) ↔ 𝑣 = 𝑤))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | brpermmodel 44993 | The membership relation in a permutation model. We use a permutation 𝐹 of the universe to define a relation 𝑅 that serves as the membership relation in our model. The conclusion of this theorem is Definition II.9.1 of [Kunen2] p. 148. All the axioms of ZFC except for Regularity hold in permutation models, and Regularity will be false if 𝐹 is chosen appropriately. Thus, permutation models can be used to show that Regularity does not follow from the other axioms (with the usual proviso that the axioms are consistent). (Contributed by Eric Schmidt, 6-Nov-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐹:V–1-1-onto→V & ⊢ 𝑅 = (◡𝐹 ∘ E ) & ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴𝑅𝐵 ↔ 𝐴 ∈ (𝐹‘𝐵)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | brpermmodelcnv 44994 | Ordinary membership expressed in terms of the permutation model's membership relation. (Contributed by Eric Schmidt, 6-Nov-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐹:V–1-1-onto→V & ⊢ 𝑅 = (◡𝐹 ∘ E ) & ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴𝑅(◡𝐹‘𝐵) ↔ 𝐴 ∈ 𝐵) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | permaxext 44995* | The Axiom of Extensionality ax-ext 2701 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 6-Nov-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐹:V–1-1-onto→V & ⊢ 𝑅 = (◡𝐹 ∘ E ) ⇒ ⊢ (∀𝑧(𝑧𝑅𝑥 ↔ 𝑧𝑅𝑦) → 𝑥 = 𝑦) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | permaxrep 44996* |
The Axiom of Replacement ax-rep 5234 holds in permutation models. Part
of Exercise II.9.2 of [Kunen2] p. 148.
Note that, to prove that an instance of Replacement holds in the model, 𝜑 would need have all instances of ∈ replaced with 𝑅. But this still results in an instance of this theorem, so we do establish that Replacement holds. (Contributed by Eric Schmidt, 6-Nov-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐹:V–1-1-onto→V & ⊢ 𝑅 = (◡𝐹 ∘ E ) ⇒ ⊢ (∀𝑤∃𝑦∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑦) → ∃𝑦∀𝑧(𝑧𝑅𝑦 ↔ ∃𝑤(𝑤𝑅𝑥 ∧ ∀𝑦𝜑))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | permaxsep 44997* |
The Axiom of Separation ax-sep 5251 holds in permutation models. Part of
Exercise II.9.2 of [Kunen2] p. 148.
Note that, to prove that an instance of Separation holds in the model, 𝜑 would need have all instances of ∈ replaced with 𝑅. But this still results in an instance of this theorem, so we do establish that Separation holds. (Contributed by Eric Schmidt, 6-Nov-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐹:V–1-1-onto→V & ⊢ 𝑅 = (◡𝐹 ∘ E ) ⇒ ⊢ ∃𝑦∀𝑥(𝑥𝑅𝑦 ↔ (𝑥𝑅𝑧 ∧ 𝜑)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | permaxnul 44998* | The Null Set Axiom ax-nul 5261 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 6-Nov-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐹:V–1-1-onto→V & ⊢ 𝑅 = (◡𝐹 ∘ E ) ⇒ ⊢ ∃𝑥∀𝑦 ¬ 𝑦𝑅𝑥 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | permaxpow 44999* | The Axiom of Power Sets ax-pow 5320 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 6-Nov-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐹:V–1-1-onto→V & ⊢ 𝑅 = (◡𝐹 ∘ E ) ⇒ ⊢ ∃𝑦∀𝑧(∀𝑤(𝑤𝑅𝑧 → 𝑤𝑅𝑥) → 𝑧𝑅𝑦) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | permaxpr 45000* | The Axiom of Pairing ax-pr 5387 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 6-Nov-2025.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐹:V–1-1-onto→V & ⊢ 𝑅 = (◡𝐹 ∘ E ) ⇒ ⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤𝑅𝑧) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |