Theorem List for Metamath Proof Explorer - 44901-45000 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | sucidALTVD 44901 |
A set belongs to its successor. Alternate proof of sucid 6390.
The following User's Proof is a Virtual Deduction proof
completed automatically by the tools program
completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm
Megill's Metamath Proof Assistant. sucidALT 44902 is sucidALTVD 44901
without virtual deductions and was automatically derived from
sucidALTVD 44901. This proof illustrates that
completeusersproof.cmd will generate a Metamath proof from any
User's Proof which is "conventional" in the sense that no step
is a virtual deduction, provided that all necessary unification
theorems and transformation deductions are in set.mm.
completeusersproof.cmd automatically converts such a
conventional proof into a Virtual Deduction proof for which each
step happens to be a 0-virtual hypothesis virtual deduction.
The user does not need to search for reference theorem labels or
deduction labels nor does he(she) need to use theorems and
deductions which unify with reference theorems and deductions in
set.mm. All that is necessary is that each theorem or deduction
of the User's Proof unifies with some reference theorem or
deduction in set.mm or is a semantic variation of some theorem
or deduction which unifies with some reference theorem or
deduction in set.mm. The definition of "semantic variation" has
not been precisely defined. If it is obvious that a theorem or
deduction has the same meaning as another theorem or deduction,
then it is a semantic variation of the latter theorem or
deduction. For example, step 4 of the User's Proof is a
semantic variation of the definition (axiom)
suc 𝐴 = (𝐴 ∪ {𝐴}), which unifies with df-suc 6312, a
reference definition (axiom) in set.mm. Also, a theorem or
deduction is said to be a semantic variation of another
theorem or deduction if it is obvious upon cursory inspection
that it has the same meaning as a weaker form of the latter
theorem or deduction. For example, the deduction Ord 𝐴
infers ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) is a
semantic variation of the theorem (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥))), which unifies with
the set.mm reference definition (axiom) dford2 9510.
| h1:: | ⊢ 𝐴 ∈ V
| | 2:1: | ⊢ 𝐴 ∈ {𝐴}
| | 3:2: | ⊢ 𝐴 ∈ ({𝐴} ∪ 𝐴)
| | 4:: | ⊢ suc 𝐴 = ({𝐴} ∪ 𝐴)
| | qed:3,4: | ⊢ 𝐴 ∈ suc 𝐴
|
(Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ 𝐴 ∈
V ⇒ ⊢ 𝐴 ∈ suc 𝐴 |
| |
| Theorem | sucidALT 44902 |
A set belongs to its successor. This proof was automatically derived
from sucidALTVD 44901 using translate_without_overwriting.cmd and
minimizing. (Contributed by Alan Sare, 18-Feb-2012.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ 𝐴 ∈
V ⇒ ⊢ 𝐴 ∈ suc 𝐴 |
| |
| Theorem | sucidVD 44903 |
A set belongs to its successor. The following User's Proof is a
Virtual Deduction proof completed automatically by the tools
program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2
and Norm Megill's Metamath Proof Assistant.
sucid 6390 is sucidVD 44903 without virtual deductions and was automatically
derived from sucidVD 44903.
| h1:: | ⊢ 𝐴 ∈ V
| | 2:1: | ⊢ 𝐴 ∈ {𝐴}
| | 3:2: | ⊢ 𝐴 ∈ (𝐴 ∪ {𝐴})
| | 4:: | ⊢ suc 𝐴 = (𝐴 ∪ {𝐴})
| | qed:3,4: | ⊢ 𝐴 ∈ suc 𝐴
|
(Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ 𝐴 ∈
V ⇒ ⊢ 𝐴 ∈ suc 𝐴 |
| |
| Theorem | imbi12VD 44904 |
Implication form of imbi12i 350. The following User's Proof is a Virtual
Deduction proof completed automatically by the tools program
completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm
Megill's Metamath Proof Assistant. imbi12 346 is imbi12VD 44904 without virtual
deductions and was automatically derived from imbi12VD 44904.
| 1:: | ⊢ ( (𝜑 ↔ 𝜓) ▶ (𝜑 ↔ 𝜓) )
| | 2:: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃)
▶ (𝜒 ↔ 𝜃) )
| | 3:: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃) , (𝜑
→ 𝜒) ▶ (𝜑 → 𝜒) )
| | 4:1,3: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃) , (𝜑
→ 𝜒) ▶ (𝜓 → 𝜒) )
| | 5:2,4: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃) , (𝜑
→ 𝜒) ▶ (𝜓 → 𝜃) )
| | 6:5: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃)
▶ ((𝜑 → 𝜒) → (𝜓 → 𝜃)) )
| | 7:: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃) , (𝜓
→ 𝜃) ▶ (𝜓 → 𝜃) )
| | 8:1,7: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃) , (𝜓
→ 𝜃) ▶ (𝜑 → 𝜃) )
| | 9:2,8: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃) , (𝜓
→ 𝜃) ▶ (𝜑 → 𝜒) )
| | 10:9: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃)
▶ ((𝜓 → 𝜃) → (𝜑 → 𝜒)) )
| | 11:6,10: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃)
▶ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) )
| | 12:11: | ⊢ ( (𝜑 ↔ 𝜓) ▶ ((𝜒 ↔ 𝜃)
→ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃))) )
| | qed:12: | ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ↔ 𝜃)
→ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃))))
|
(Contributed by Alan Sare, 18-Mar-2012.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ↔ 𝜃) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)))) |
| |
| Theorem | imbi13VD 44905 |
Join three logical equivalences to form equivalence of implications. The
following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. imbi13 44552
is imbi13VD 44905 without virtual deductions and was automatically derived
from imbi13VD 44905.
| 1:: | ⊢ ( (𝜑 ↔ 𝜓) ▶ (𝜑 ↔ 𝜓) )
| | 2:: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃)
▶ (𝜒 ↔ 𝜃) )
| | 3:: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃) , (𝜏
↔ 𝜂) ▶ (𝜏 ↔ 𝜂) )
| | 4:2,3: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃) , (𝜏
↔ 𝜂) ▶ ((𝜒 → 𝜏) ↔ (𝜃 → 𝜂)) )
| | 5:1,4: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃) , (𝜏
↔ 𝜂) ▶ ((𝜑 → (𝜒 → 𝜏)) ↔ (𝜓 → (𝜃 → 𝜂))) )
| | 6:5: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃)
▶ ((𝜏 ↔ 𝜂) → ((𝜑 → (𝜒 → 𝜏)) ↔ (𝜓 → (𝜃
→ 𝜂)))) )
| | 7:6: | ⊢ ( (𝜑 ↔ 𝜓) ▶ ((𝜒 ↔ 𝜃)
→ ((𝜏 ↔ 𝜂) → ((𝜑 → (𝜒 → 𝜏)) ↔ (𝜓 → (𝜃
→ 𝜂))))) )
| | qed:7: | ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ↔ 𝜃)
→ ((𝜏 ↔ 𝜂) → ((𝜑 → (𝜒 → 𝜏)) ↔ (𝜓 → (𝜃
→ 𝜂))))))
|
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ↔ 𝜃) → ((𝜏 ↔ 𝜂) → ((𝜑 → (𝜒 → 𝜏)) ↔ (𝜓 → (𝜃 → 𝜂)))))) |
| |
| Theorem | sbcim2gVD 44906 |
Distribution of class substitution over a left-nested implication.
Similar to sbcimg 3790.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
sbcim2g 44570 is sbcim2gVD 44906 without virtual deductions and was automatically
derived from sbcim2gVD 44906.
| 1:: | ⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 )
| | 2:: | ⊢ ( 𝐴 ∈ 𝐵 , [𝐴 / 𝑥](𝜑 → (𝜓
→ 𝜒)) ▶ [𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) )
| | 3:1,2: | ⊢ ( 𝐴 ∈ 𝐵 , [𝐴 / 𝑥](𝜑 → (𝜓
→ 𝜒)) ▶ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥](𝜓 → 𝜒)) )
| | 4:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝜓 → 𝜒)
↔ ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) )
| | 5:3,4: | ⊢ ( 𝐴 ∈ 𝐵 , [𝐴 / 𝑥](𝜑 → (𝜓
→ 𝜒)) ▶ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓
→ [𝐴 / 𝑥]𝜒)) )
| | 6:5: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝜑 → (𝜓
→ 𝜒)) → ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓
→ [𝐴 / 𝑥]𝜒))) )
| | 7:: | ⊢ ( 𝐴 ∈ 𝐵 , ([𝐴 / 𝑥]𝜑
→ ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) ▶ ([𝐴 / 𝑥]𝜑
→ ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) )
| | 8:4,7: | ⊢ ( 𝐴 ∈ 𝐵 , ([𝐴 / 𝑥]𝜑
→ ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) ▶ ([𝐴 / 𝑥]𝜑
→ [𝐴 / 𝑥](𝜓 → 𝜒)) )
| | 9:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝜑 → (𝜓
→ 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥](𝜓 → 𝜒))) )
| | 10:8,9: | ⊢ ( 𝐴 ∈ 𝐵 , ([𝐴 / 𝑥]𝜑
→ ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) ▶ [𝐴 / 𝑥](𝜑 → (𝜓
→ 𝜒)) )
| | 11:10: | ⊢ ( 𝐴 ∈ 𝐵 ▶ (([𝐴 / 𝑥]𝜑
→ ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) → [𝐴 / 𝑥](𝜑 → (𝜓
→ 𝜒))) )
| | 12:6,11: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝜑
→ (𝜓 → 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓
→ [𝐴 / 𝑥]𝜒))) )
| | qed:12: | ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥](𝜑 → (𝜓
→ 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓
→ [𝐴 / 𝑥]𝜒))))
|
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)))) |
| |
| Theorem | sbcbiVD 44907 |
Implication form of sbcbii 3798.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
sbcbi 44571 is sbcbiVD 44907 without virtual deductions and was automatically
derived from sbcbiVD 44907.
| 1:: | ⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 )
| | 2:: | ⊢ ( 𝐴 ∈ 𝐵 , ∀𝑥(𝜑 ↔ 𝜓)
▶ ∀𝑥(𝜑 ↔ 𝜓) )
| | 3:1,2: | ⊢ ( 𝐴 ∈ 𝐵 , ∀𝑥(𝜑 ↔ 𝜓)
▶ [𝐴 / 𝑥](𝜑 ↔ 𝜓) )
| | 4:1,3: | ⊢ ( 𝐴 ∈ 𝐵 , ∀𝑥(𝜑 ↔ 𝜓)
▶ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) )
| | 5:4: | ⊢ ( 𝐴 ∈ 𝐵 ▶ (∀𝑥(𝜑 ↔ 𝜓)
→ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) )
| | qed:5: | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝜑 ↔ 𝜓)
→ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)))
|
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓))) |
| |
| Theorem | trsbcVD 44908* |
Formula-building inference rule for class substitution, substituting a
class variable for the setvar variable of the transitivity predicate.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
trsbc 44572 is trsbcVD 44908 without virtual deductions and was automatically
derived from trsbcVD 44908.
| 1:: | ⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 )
| | 2:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]𝑧 ∈ 𝑦
↔ 𝑧 ∈ 𝑦) )
| | 3:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]𝑦 ∈ 𝑥
↔ 𝑦 ∈ 𝐴) )
| | 4:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]𝑧 ∈ 𝑥
↔ 𝑧 ∈ 𝐴) )
| | 5:1,2,3,4: | ⊢ ( 𝐴 ∈ 𝐵 ▶ (([𝐴 / 𝑥]𝑧 ∈ 𝑦
→ ([𝐴 / 𝑥]𝑦 ∈ 𝑥 → [𝐴 / 𝑥]𝑧 ∈ 𝑥)) ↔ (𝑧 ∈ 𝑦
→ (𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴))) )
| | 6:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝑧 ∈ 𝑦
→ (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ ([𝐴 / 𝑥]𝑧 ∈ 𝑦 →
([𝐴 / 𝑥]𝑦 ∈ 𝑥 → [𝐴 / 𝑥]𝑧 ∈ 𝑥))) )
| | 7:5,6: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝑧 ∈ 𝑦
→ (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ (𝑧 ∈ 𝑦 → (𝑦 ∈ 𝐴
→ 𝑧 ∈ 𝐴))) )
| | 8:: | ⊢ ((𝑧 ∈ 𝑦 → (𝑦 ∈ 𝐴
→ 𝑧 ∈ 𝐴)) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))
| | 9:7,8: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝑧 ∈ 𝑦
→ (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)
→ 𝑧 ∈ 𝐴)) )
| | 10:: | ⊢ ((𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥
→ 𝑧 ∈ 𝑥)) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥))
| | 11:10: | ⊢ ∀𝑥((𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥
→ 𝑧 ∈ 𝑥)) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥))
| | 12:1,11: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝑧 ∈ 𝑦
→ (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ [𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥)
→ 𝑧 ∈ 𝑥)) )
| | 13:9,12: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]((𝑧 ∈ 𝑦
∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)
→ 𝑧 ∈ 𝐴)) )
| | 14:13: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ∀𝑦([𝐴 / 𝑥]((𝑧
∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)
→ 𝑧 ∈ 𝐴)) )
| | 15:14: | ⊢ ( 𝐴 ∈ 𝐵 ▶ (∀𝑦[𝐴 / 𝑥]((𝑧
∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)
→ 𝑧 ∈ 𝐴)) )
| | 16:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]∀𝑦((𝑧
∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑦[𝐴 / 𝑥]((𝑧 ∈ 𝑦
∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥)) )
| | 17:15,16: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]∀𝑦((𝑧
∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)
→ 𝑧 ∈ 𝐴)) )
| | 18:17: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ∀𝑧([𝐴 / 𝑥]∀𝑦((
𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)
→ 𝑧 ∈ 𝐴)) )
| | 19:18: | ⊢ ( 𝐴 ∈ 𝐵 ▶ (∀𝑧[𝐴 / 𝑥]∀𝑦((
𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦
∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) )
| | 20:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]∀𝑧∀𝑦((
𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑧[𝐴 / 𝑥]∀𝑦((𝑧
∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥)) )
| | 21:19,20: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]∀𝑧∀𝑦((
𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦
∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) )
| | 22:: | ⊢ (Tr 𝐴 ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦
∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))
| | 23:21,22: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]∀𝑧∀𝑦((
𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ Tr 𝐴) )
| | 24:: | ⊢ (Tr 𝑥 ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦
∈ 𝑥) → 𝑧 ∈ 𝑥))
| | 25:24: | ⊢ ∀𝑥(Tr 𝑥 ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦
∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥))
| | 26:1,25: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]Tr 𝑥
↔ [𝐴 / 𝑥]∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥)) )
| | 27:23,26: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]Tr 𝑥
↔ Tr 𝐴) )
| | qed:27: | ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]Tr 𝑥
↔ Tr 𝐴))
|
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]Tr 𝑥 ↔ Tr 𝐴)) |
| |
| Theorem | truniALTVD 44909* |
The union of a class of transitive sets is transitive.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
truniALT 44573 is truniALTVD 44909 without virtual deductions and was
automatically derived from truniALTVD 44909.
| 1:: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 ▶ ∀𝑥 ∈ 𝐴
Tr 𝑥 )
| | 2:: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦
∧ 𝑦 ∈ ∪ 𝐴) ▶ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) )
| | 3:2: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦
∧ 𝑦 ∈ ∪ 𝐴) ▶ 𝑧 ∈ 𝑦 )
| | 4:2: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦
∧ 𝑦 ∈ ∪ 𝐴) ▶ 𝑦 ∈ ∪ 𝐴 )
| | 5:4: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦
∧ 𝑦 ∈ ∪ 𝐴) ▶ ∃𝑞(𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) )
| | 6:: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦
∧ 𝑦 ∈ ∪ 𝐴), (𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) ▶ (𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) )
| | 7:6: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦
∧ 𝑦 ∈ ∪ 𝐴), (𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) ▶ 𝑦 ∈ 𝑞 )
| | 8:6: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦
∧ 𝑦 ∈ ∪ 𝐴), (𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) ▶ 𝑞 ∈ 𝐴 )
| | 9:1,8: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦
∧ 𝑦 ∈ ∪ 𝐴), (𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) ▶ [𝑞 / 𝑥]Tr 𝑥 )
| | 10:8,9: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦
∧ 𝑦 ∈ ∪ 𝐴), (𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) ▶ Tr 𝑞 )
| | 11:3,7,10: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦
∧ 𝑦 ∈ ∪ 𝐴), (𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) ▶ 𝑧 ∈ 𝑞 )
| | 12:11,8: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦
∧ 𝑦 ∈ ∪ 𝐴), (𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) ▶ 𝑧 ∈ ∪ 𝐴 )
| | 13:12: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦
∧ 𝑦 ∈ ∪ 𝐴) ▶ ((𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) → 𝑧 ∈ ∪ 𝐴) )
| | 14:13: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦
∧ 𝑦 ∈ ∪ 𝐴) ▶ ∀𝑞((𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) → 𝑧 ∈ ∪ 𝐴) )
| | 15:14: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦
∧ 𝑦 ∈ ∪ 𝐴) ▶ (∃𝑞(𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) → 𝑧 ∈ ∪ 𝐴) )
| | 16:5,15: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦
∧ 𝑦 ∈ ∪ 𝐴) ▶ 𝑧 ∈ ∪ 𝐴 )
| | 17:16: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 ▶ ((𝑧 ∈ 𝑦
∧ 𝑦 ∈ ∪ 𝐴) → 𝑧 ∈ ∪ 𝐴) )
| | 18:17: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥
▶ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) → 𝑧 ∈ ∪ 𝐴) )
| | 19:18: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 ▶ Tr ∪ 𝐴 )
| | qed:19: | ⊢ (∀𝑥 ∈ 𝐴Tr 𝑥 → Tr ∪ 𝐴)
|
(Contributed by Alan Sare, 18-Mar-2012.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∪
𝐴) |
| |
| Theorem | ee33VD 44910 |
Non-virtual deduction form of e33 44765.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
ee33 44553 is ee33VD 44910 without virtual deductions and was automatically
derived from ee33VD 44910.
| h1:: | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃)))
| | h2:: | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏)))
| | h3:: | ⊢ (𝜃 → (𝜏 → 𝜂))
| | 4:1,3: | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜏 → 𝜂))))
| | 5:4: | ⊢ (𝜏 → (𝜑 → (𝜓 → (𝜒 → 𝜂))))
| | 6:2,5: | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜑 → (𝜓
→ (𝜒 → 𝜂))))))
| | 7:6: | ⊢ (𝜓 → (𝜒 → (𝜑 → (𝜓 → (𝜒
→ 𝜂)))))
| | 8:7: | ⊢ (𝜒 → (𝜑 → (𝜓 → (𝜒 → 𝜂))))
| | qed:8: | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂)))
|
(Contributed by Alan Sare, 18-Mar-2012.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) & ⊢ (𝜃 → (𝜏 → 𝜂)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) |
| |
| Theorem | trintALTVD 44911* |
The intersection of a class of transitive sets is transitive. Virtual
deduction proof of trintALT 44912.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
trintALT 44912 is trintALTVD 44911 without virtual deductions and was
automatically derived from trintALTVD 44911.
| 1:: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 ▶ ∀𝑥 ∈ 𝐴Tr 𝑥 )
| | 2:: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
∩ 𝐴) ▶ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) )
| | 3:2: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
∩ 𝐴) ▶ 𝑧 ∈ 𝑦 )
| | 4:2: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
∩ 𝐴) ▶ 𝑦 ∈ ∩ 𝐴 )
| | 5:4: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
∩ 𝐴) ▶ ∀𝑞 ∈ 𝐴𝑦 ∈ 𝑞 )
| | 6:5: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
∩ 𝐴) ▶ (𝑞 ∈ 𝐴 → 𝑦 ∈ 𝑞) )
| | 7:: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
∩ 𝐴), 𝑞 ∈ 𝐴 ▶ 𝑞 ∈ 𝐴 )
| | 8:7,6: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
∩ 𝐴), 𝑞 ∈ 𝐴 ▶ 𝑦 ∈ 𝑞 )
| | 9:7,1: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
∩ 𝐴), 𝑞 ∈ 𝐴 ▶ [𝑞 / 𝑥]Tr 𝑥 )
| | 10:7,9: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
∩ 𝐴), 𝑞 ∈ 𝐴 ▶ Tr 𝑞 )
| | 11:10,3,8: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
∩ 𝐴), 𝑞 ∈ 𝐴 ▶ 𝑧 ∈ 𝑞 )
| | 12:11: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
∩ 𝐴) ▶ (𝑞 ∈ 𝐴 → 𝑧 ∈ 𝑞) )
| | 13:12: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
∩ 𝐴) ▶ ∀𝑞(𝑞 ∈ 𝐴 → 𝑧 ∈ 𝑞) )
| | 14:13: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
∩ 𝐴) ▶ ∀𝑞 ∈ 𝐴𝑧 ∈ 𝑞 )
| | 15:3,14: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
∩ 𝐴) ▶ 𝑧 ∈ ∩ 𝐴 )
| | 16:15: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 ▶ ((𝑧 ∈ 𝑦 ∧ 𝑦
∈ ∩ 𝐴) → 𝑧 ∈ ∩ 𝐴) )
| | 17:16: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 ▶ ∀𝑧∀𝑦((𝑧
∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) → 𝑧 ∈ ∩ 𝐴) )
| | 18:17: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 ▶ Tr ∩ 𝐴 )
| | qed:18: | ⊢ (∀𝑥 ∈ 𝐴Tr 𝑥 → Tr ∩ 𝐴)
|
(Contributed by Alan Sare, 17-Apr-2012.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∩
𝐴) |
| |
| Theorem | trintALT 44912* |
The intersection of a class of transitive sets is transitive. Exercise
5(b) of [Enderton] p. 73. trintALT 44912 is an alternate proof of trint 5215.
trintALT 44912 is trintALTVD 44911 without virtual deductions and was
automatically derived from trintALTVD 44911 using the tools program
translate..without..overwriting.cmd and the Metamath program
"MM-PA>
MINIMIZE_WITH *" command. (Contributed by Alan Sare, 17-Apr-2012.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∩
𝐴) |
| |
| Theorem | undif3VD 44913 |
The first equality of Exercise 13 of [TakeutiZaring] p. 22. Virtual
deduction proof of undif3 4250.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
undif3 4250 is undif3VD 44913 without virtual deductions and was automatically
derived from undif3VD 44913.
| 1:: | ⊢ (𝑥 ∈ (𝐴 ∪ (𝐵 ∖ 𝐶)) ↔ (𝑥 ∈ 𝐴
∨ 𝑥 ∈ (𝐵 ∖ 𝐶)))
| | 2:: | ⊢ (𝑥 ∈ (𝐵 ∖ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈
𝐶))
| | 3:2: | ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ (𝐵 ∖ 𝐶)) ↔ (𝑥
∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)))
| | 4:1,3: | ⊢ (𝑥 ∈ (𝐴 ∪ (𝐵 ∖ 𝐶)) ↔ (𝑥 ∈ 𝐴
∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)))
| | 5:: | ⊢ ( 𝑥 ∈ 𝐴 ▶ 𝑥 ∈ 𝐴 )
| | 6:5: | ⊢ ( 𝑥 ∈ 𝐴 ▶ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) )
| | 7:5: | ⊢ ( 𝑥 ∈ 𝐴 ▶ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴) )
| | 8:6,7: | ⊢ ( 𝑥 ∈ 𝐴 ▶ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧
(¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)) )
| | 9:8: | ⊢ (𝑥 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (
¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)))
| | 10:: | ⊢ ( (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ▶ (𝑥 ∈ 𝐵
∧ ¬ 𝑥 ∈ 𝐶) )
| | 11:10: | ⊢ ( (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ▶ 𝑥 ∈ 𝐵 )
| | 12:10: | ⊢ ( (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ▶ ¬ 𝑥 ∈ 𝐶
)
| | 13:11: | ⊢ ( (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ▶ (𝑥 ∈ 𝐴
∨ 𝑥 ∈ 𝐵) )
| | 14:12: | ⊢ ( (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ▶ (¬ 𝑥 ∈
𝐶 ∨ 𝑥 ∈ 𝐴) )
| | 15:13,14: | ⊢ ( (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ▶ ((𝑥 ∈
𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)) )
| | 16:15: | ⊢ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) → ((𝑥 ∈ 𝐴
∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)))
| | 17:9,16: | ⊢ ((𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))
→ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)))
| | 18:: | ⊢ ( (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) ▶ (𝑥 ∈ 𝐴
∧ ¬ 𝑥 ∈ 𝐶) )
| | 19:18: | ⊢ ( (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) ▶ 𝑥 ∈ 𝐴 )
| | 20:18: | ⊢ ( (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) ▶ ¬ 𝑥 ∈ 𝐶
)
| | 21:18: | ⊢ ( (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) ▶ (𝑥 ∈ 𝐴
∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)) )
| | 22:21: | ⊢ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐴 ∨
(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)))
| | 23:: | ⊢ ( (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ▶ (𝑥 ∈ 𝐴 ∧
𝑥 ∈ 𝐴) )
| | 24:23: | ⊢ ( (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ▶ 𝑥 ∈ 𝐴 )
| | 25:24: | ⊢ ( (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ▶ (𝑥 ∈ 𝐴 ∨
(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)) )
| | 26:25: | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐴 ∨ (
𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)))
| | 27:10: | ⊢ ( (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ▶ (𝑥 ∈ 𝐴
∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)) )
| | 28:27: | ⊢ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐴 ∨
(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)))
| | 29:: | ⊢ ( (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ▶ (𝑥 ∈ 𝐵 ∧
𝑥 ∈ 𝐴) )
| | 30:29: | ⊢ ( (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ▶ 𝑥 ∈ 𝐴 )
| | 31:30: | ⊢ ( (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ▶ (𝑥 ∈ 𝐴 ∨
(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)) )
| | 32:31: | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐴 ∨ (
𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)))
| | 33:22,26: | ⊢ (((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) ∨ (𝑥 ∈ 𝐴
∧ 𝑥 ∈ 𝐴)) → (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)))
| | 34:28,32: | ⊢ (((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ∨ (𝑥 ∈ 𝐵
∧ 𝑥 ∈ 𝐴)) → (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)))
| | 35:33,34: | ⊢ ((((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) ∨ (𝑥 ∈
𝐴 ∧ 𝑥 ∈ 𝐴)) ∨ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ∨ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)))
→ (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)))
| | 36:: | ⊢ ((((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) ∨ (𝑥 ∈
𝐴 ∧ 𝑥 ∈ 𝐴)) ∨ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ∨ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)))
↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)))
| | 37:36,35: | ⊢ (((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶
∨ 𝑥 ∈ 𝐴)) → (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)))
| | 38:17,37: | ⊢ ((𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))
↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)))
| | 39:: | ⊢ (𝑥 ∈ (𝐶 ∖ 𝐴) ↔ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈
𝐴))
| | 40:39: | ⊢ (¬ 𝑥 ∈ (𝐶 ∖ 𝐴) ↔ ¬ (𝑥 ∈ 𝐶 ∧
¬ 𝑥 ∈ 𝐴))
| | 41:: | ⊢ (¬ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴) ↔ (¬ 𝑥
∈ 𝐶 ∨ 𝑥 ∈ 𝐴))
| | 42:40,41: | ⊢ (¬ 𝑥 ∈ (𝐶 ∖ 𝐴) ↔ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥
∈ 𝐴))
| | 43:: | ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵
))
| | 44:43,42: | ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ ¬ 𝑥 ∈ (𝐶 ∖ 𝐴)
) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴)))
| | 45:: | ⊢ (𝑥 ∈ ((𝐴 ∪ 𝐵) ∖ (𝐶 ∖ 𝐴)) ↔ (
𝑥 ∈ (𝐴 ∪ 𝐵) ∧ ¬ 𝑥 ∈ (𝐶 ∖ 𝐴)))
| | 46:45,44: | ⊢ (𝑥 ∈ ((𝐴 ∪ 𝐵) ∖ (𝐶 ∖ 𝐴)) ↔ (
(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)))
| | 47:4,38: | ⊢ (𝑥 ∈ (𝐴 ∪ (𝐵 ∖ 𝐶)) ↔ ((𝑥 ∈ 𝐴
∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)))
| | 48:46,47: | ⊢ (𝑥 ∈ (𝐴 ∪ (𝐵 ∖ 𝐶)) ↔ 𝑥 ∈ ((𝐴
∪ 𝐵) ∖ (𝐶 ∖ 𝐴)))
| | 49:48: | ⊢ ∀𝑥(𝑥 ∈ (𝐴 ∪ (𝐵 ∖ 𝐶)) ↔ 𝑥 ∈
((𝐴 ∪ 𝐵) ∖ (𝐶 ∖ 𝐴)))
| | qed:49: | ⊢ (𝐴 ∪ (𝐵 ∖ 𝐶)) = ((𝐴 ∪ 𝐵) ∖ (𝐶
∖ 𝐴))
|
(Contributed by Alan Sare, 17-Apr-2012.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∪ (𝐵 ∖ 𝐶)) = ((𝐴 ∪ 𝐵) ∖ (𝐶 ∖ 𝐴)) |
| |
| Theorem | sbcssgVD 44914 |
Virtual deduction proof of sbcssg 4470.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
sbcssg 4470 is sbcssgVD 44914 without virtual deductions and was automatically
derived from sbcssgVD 44914.
| 1:: | ⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 )
| | 2:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ 𝑦
∈ ⦋𝐴 / 𝑥⦌𝐶) )
| | 3:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]𝑦 ∈ 𝐷 ↔ 𝑦
∈ ⦋𝐴 / 𝑥⦌𝐷) )
| | 4:2,3: | ⊢ ( 𝐴 ∈ 𝐵 ▶ (([𝐴 / 𝑥]𝑦 ∈ 𝐶 →
[𝐴 / 𝑥]𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷
)) )
| | 5:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝑦 ∈ 𝐶 →
𝑦 ∈ 𝐷) ↔ ([𝐴 / 𝑥]𝑦 ∈ 𝐶 → [𝐴 / 𝑥]𝑦 ∈ 𝐷)) )
| | 6:4,5: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝑦 ∈ 𝐶 →
𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)) )
| | 7:6: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ∀𝑦([𝐴 / 𝑥](𝑦 ∈
𝐶 → 𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)) )
| | 8:7: | ⊢ ( 𝐴 ∈ 𝐵 ▶ (∀𝑦[𝐴 / 𝑥](𝑦 ∈
𝐶 → 𝑦 ∈ 𝐷) ↔ ∀𝑦(𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)
) )
| | 9:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]∀𝑦(𝑦 ∈
𝐶 → 𝑦 ∈ 𝐷) ↔ ∀𝑦[𝐴 / 𝑥](𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷)) )
| | 10:8,9: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]∀𝑦(𝑦 ∈
𝐶 → 𝑦 ∈ 𝐷) ↔ ∀𝑦(𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)
) )
| | 11:: | ⊢ (𝐶 ⊆ 𝐷 ↔ ∀𝑦(𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷))
| | 110:11: | ⊢ ∀𝑥(𝐶 ⊆ 𝐷 ↔ ∀𝑦(𝑦 ∈ 𝐶 → 𝑦 ∈
𝐷))
| | 12:1,110: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]𝐶 ⊆ 𝐷 ↔
[𝐴 / 𝑥]∀𝑦(𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷)) )
| | 13:10,12: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]𝐶 ⊆ 𝐷 ↔
∀𝑦(𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)) )
| | 14:: | ⊢ (⦋𝐴 / 𝑥⦌𝐶 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ↔ ∀
𝑦(𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷))
| | 15:13,14: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]𝐶 ⊆ 𝐷 ↔
⦋𝐴 / 𝑥⦌𝐶 ⊆ ⦋𝐴 / 𝑥⦌𝐷) )
| | qed:15: | ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝐶 ⊆ 𝐷 ↔ ⦋
𝐴 / 𝑥⦌𝐶 ⊆ ⦋𝐴 / 𝑥⦌𝐷))
|
(Contributed by Alan Sare, 22-Jul-2012.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝐶 ⊆ 𝐷 ↔ ⦋𝐴 / 𝑥⦌𝐶 ⊆ ⦋𝐴 / 𝑥⦌𝐷)) |
| |
| Theorem | csbingVD 44915 |
Virtual deduction proof of csbin 4392.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
csbin 4392 is csbingVD 44915 without virtual deductions and was
automatically derived from csbingVD 44915.
| 1:: | ⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 )
| | 2:: | ⊢ (𝐶 ∩ 𝐷) = {𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)
}
| | 20:2: | ⊢ ∀𝑥(𝐶 ∩ 𝐷) = {𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦
∈ 𝐷)}
| | 30:1,20: | ⊢ ( 𝐴 ∈ 𝐵 ▶ [𝐴 / 𝑥](𝐶 ∩ 𝐷) =
{𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} )
| | 3:1,30: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) =
⦋𝐴 / 𝑥⦌{𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} )
| | 4:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ⦋𝐴 / 𝑥⦌{𝑦 ∣ (𝑦 ∈ 𝐶
∧ 𝑦 ∈ 𝐷)} = {𝑦 ∣ [𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} )
| | 5:3,4: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) =
{𝑦 ∣ [𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} )
| | 6:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ 𝑦
∈ ⦋𝐴 / 𝑥⦌𝐶) )
| | 7:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]𝑦 ∈ 𝐷 ↔ 𝑦
∈ ⦋𝐴 / 𝑥⦌𝐷) )
| | 8:6,7: | ⊢ ( 𝐴 ∈ 𝐵 ▶ (([𝐴 / 𝑥]𝑦 ∈ 𝐶 ∧
[𝐴 / 𝑥]𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷
)) )
| | 9:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧
𝑦 ∈ 𝐷) ↔ ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐷)) )
| | 10:9,8: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧
𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)) )
| | 11:10: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ∀𝑦([𝐴 / 𝑥](𝑦 ∈
𝐶 ∧ 𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)) )
| | 12:11: | ⊢ ( 𝐴 ∈ 𝐵 ▶ {𝑦 ∣ [𝐴 / 𝑥](𝑦 ∈ 𝐶
∧ 𝑦 ∈ 𝐷)} = {𝑦 ∣ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)} )
| | 13:5,12: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) =
{𝑦 ∣ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)} )
| | 14:: | ⊢ (⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷) = {
𝑦 ∣ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)}
| | 15:13,14: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) =
(⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷) )
| | qed:15: | ⊢ (𝐴 ∈ 𝐵 → ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = (
⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷))
|
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝐵 → ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = (⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷)) |
| |
| Theorem | onfrALTlem5VD 44916* |
Virtual deduction proof of onfrALTlem5 44574.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
onfrALTlem5 44574 is onfrALTlem5VD 44916 without virtual deductions and was
automatically derived from onfrALTlem5VD 44916.
| 1:: | ⊢ 𝑎 ∈ V
| | 2:1: | ⊢ (𝑎 ∩ 𝑥) ∈ V
| | 3:2: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]𝑏 = ∅ ↔ (𝑎
∩ 𝑥) = ∅)
| | 4:3: | ⊢ (¬ [(𝑎 ∩ 𝑥) / 𝑏]𝑏 = ∅ ↔
¬ (𝑎 ∩ 𝑥) = ∅)
| | 5:: | ⊢ ((𝑎 ∩ 𝑥) ≠ ∅ ↔ ¬ (𝑎 ∩ 𝑥
) = ∅)
| | 6:4,5: | ⊢ (¬ [(𝑎 ∩ 𝑥) / 𝑏]𝑏 = ∅ ↔
(𝑎 ∩ 𝑥) ≠ ∅)
| | 7:2: | ⊢ (¬ [(𝑎 ∩ 𝑥) / 𝑏]𝑏 = ∅ ↔
[(𝑎 ∩ 𝑥) / 𝑏]¬ 𝑏 = ∅)
| | 8:: | ⊢ (𝑏 ≠ ∅ ↔ ¬ 𝑏 = ∅)
| | 9:8: | ⊢ ∀𝑏(𝑏 ≠ ∅ ↔ ¬ 𝑏 = ∅)
| | 10:2,9: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]𝑏 ≠ ∅ ↔
[(𝑎 ∩ 𝑥) / 𝑏]¬ 𝑏 = ∅)
| | 11:7,10: | ⊢ (¬ [(𝑎 ∩ 𝑥) / 𝑏]𝑏 = ∅ ↔
[(𝑎 ∩ 𝑥) / 𝑏]𝑏 ≠ ∅)
| | 12:6,11: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]𝑏 ≠ ∅ ↔ (
𝑎 ∩ 𝑥) ≠ ∅)
| | 13:2: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]𝑏 ⊆ (𝑎 ∩ 𝑥
) ↔ (𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥))
| | 14:12,13: | ⊢ (([(𝑎 ∩ 𝑥) / 𝑏]𝑏 ⊆ (𝑎 ∩
𝑥) ∧ [(𝑎 ∩ 𝑥) / 𝑏]𝑏 ≠ ∅) ↔ ((𝑎 ∩ 𝑥) ⊆ (𝑎
∩ 𝑥) ∧ (𝑎 ∩ 𝑥) ≠ ∅))
| | 15:2: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏](𝑏 ⊆ (𝑎 ∩
𝑥) ∧ 𝑏 ≠ ∅) ↔ ([(𝑎 ∩ 𝑥) / 𝑏]𝑏 ⊆ (𝑎 ∩ 𝑥) ∧
[(𝑎 ∩ 𝑥) / 𝑏]𝑏 ≠ ∅))
| | 16:15,14: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏](𝑏 ⊆ (𝑎 ∩
𝑥) ∧ 𝑏 ≠ ∅) ↔ ((𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ (𝑎 ∩ 𝑥)
≠ ∅))
| | 17:2: | ⊢ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌(𝑏 ∩ 𝑦) = (
⦋(𝑎 ∩ 𝑥) / 𝑏⦌𝑏 ∩ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌𝑦)
| | 18:2: | ⊢ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌𝑏 = (𝑎 ∩ 𝑥)
| | 19:2: | ⊢ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌𝑦 = 𝑦
| | 20:18,19: | ⊢ (⦋(𝑎 ∩ 𝑥) / 𝑏⦌𝑏 ∩ ⦋(𝑎
∩ 𝑥) / 𝑏⦌𝑦) = ((𝑎 ∩ 𝑥) ∩ 𝑦)
| | 21:17,20: | ⊢ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌(𝑏 ∩ 𝑦) = ((
𝑎 ∩ 𝑥) ∩ 𝑦)
| | 22:2: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏](𝑏 ∩ 𝑦) =
∅ ↔ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌(𝑏 ∩ 𝑦) = ⦋(𝑎 ∩ 𝑥) / 𝑏⦌
∅)
| | 23:2: | ⊢ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌∅ = ∅
| | 24:21,23: | ⊢ (⦋(𝑎 ∩ 𝑥) / 𝑏⦌(𝑏 ∩ 𝑦) =
⦋(𝑎 ∩ 𝑥) / 𝑏⦌∅ ↔ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)
| | 25:22,24: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏](𝑏 ∩ 𝑦) =
∅ ↔ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)
| | 26:2: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]𝑦 ∈ 𝑏 ↔ 𝑦 ∈
(𝑎 ∩ 𝑥))
| | 27:25,26: | ⊢ (([(𝑎 ∩ 𝑥) / 𝑏]𝑦 ∈ 𝑏 ∧ [
(𝑎 ∩ 𝑥) / 𝑏](𝑏 ∩ 𝑦) = ∅) ↔ (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((
𝑎 ∩ 𝑥) ∩ 𝑦) = ∅))
| | 28:2: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏](𝑦 ∈ 𝑏 ∧ (𝑏
∩ 𝑦) = ∅) ↔ ([(𝑎 ∩ 𝑥) / 𝑏]𝑦 ∈ 𝑏 ∧ [(𝑎 ∩ 𝑥)
/ 𝑏](𝑏 ∩ 𝑦) = ∅))
| | 29:27,28: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏](𝑦 ∈ 𝑏 ∧ (𝑏
∩ 𝑦) = ∅) ↔ (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) =
∅))
| | 30:29: | ⊢ ∀𝑦([(𝑎 ∩ 𝑥) / 𝑏](𝑦 ∈ 𝑏
∧ (𝑏 ∩ 𝑦) = ∅) ↔ (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩
𝑦) = ∅))
| | 31:30: | ⊢ (∃𝑦[(𝑎 ∩ 𝑥) / 𝑏](𝑦 ∈ 𝑏
∧ (𝑏 ∩ 𝑦) = ∅) ↔ ∃𝑦(𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥)
∩ 𝑦) = ∅))
| | 32:: | ⊢ (∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩
𝑦) = ∅ ↔ ∃𝑦(𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅
))
| | 33:31,32: | ⊢ (∃𝑦[(𝑎 ∩ 𝑥) / 𝑏](𝑦 ∈ 𝑏
∧ (𝑏 ∩ 𝑦) = ∅) ↔ ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦)
= ∅)
| | 34:2: | ⊢ (∃𝑦[(𝑎 ∩ 𝑥) / 𝑏](𝑦 ∈ 𝑏
∧ (𝑏 ∩ 𝑦) = ∅) ↔ [(𝑎 ∩ 𝑥) / 𝑏]∃𝑦(𝑦 ∈ 𝑏 ∧ (
𝑏 ∩ 𝑦) = ∅))
| | 35:33,34: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]∃𝑦(𝑦 ∈ 𝑏
∧ (𝑏 ∩ 𝑦) = ∅) ↔ ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦
) = ∅)
| | 36:: | ⊢ (∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅ ↔ ∃𝑦
(𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦) = ∅))
| | 37:36: | ⊢ ∀𝑏(∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅ ↔
∃𝑦(𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦) = ∅))
| | 38:2,37: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]∃𝑦 ∈ 𝑏(𝑏
∩ 𝑦) = ∅ ↔ [(𝑎 ∩ 𝑥) / 𝑏]∃𝑦(𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦)
= ∅))
| | 39:35,38: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]∃𝑦 ∈ 𝑏(𝑏
∩ 𝑦) = ∅ ↔ ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)
| | 40:16,39: | ⊢ (([(𝑎 ∩ 𝑥) / 𝑏](𝑏 ⊆ (𝑎
∩ 𝑥) ∧ 𝑏 ≠ ∅) → [(𝑎 ∩ 𝑥) / 𝑏]∃𝑦 ∈ 𝑏(𝑏 ∩
𝑦) = ∅) ↔ (((𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ (𝑎 ∩ 𝑥) ≠
∅) → ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅))
| | 41:2: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]((𝑏 ⊆ (𝑎
∩ 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅) ↔ ([(𝑎
∩ 𝑥) / 𝑏](𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ 𝑏 ≠ ∅) → [(𝑎 ∩ 𝑥) /
𝑏]∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅))
| | qed:40,41: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]((𝑏 ⊆ (𝑎
∩ 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅) ↔ (((𝑎
∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ (𝑎 ∩ 𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎 ∩ 𝑥
)((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅))
|
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢
([(𝑎 ∩
𝑥) / 𝑏]((𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦 ∈ 𝑏 (𝑏 ∩ 𝑦) = ∅) ↔ (((𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ (𝑎 ∩ 𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)) |
| |
| Theorem | onfrALTlem4VD 44917* |
Virtual deduction proof of onfrALTlem4 44575.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
onfrALTlem4 44575 is onfrALTlem4VD 44917 without virtual deductions and was
automatically derived from onfrALTlem4VD 44917.
| 1:: | ⊢ 𝑦 ∈ V
| | 2:1: | ⊢ ([𝑦 / 𝑥](𝑎 ∩ 𝑥) = ∅ ↔ ⦋
𝑦 / 𝑥⦌(𝑎 ∩ 𝑥) = ⦋𝑦 / 𝑥⦌∅)
| | 3:1: | ⊢ ⦋𝑦 / 𝑥⦌(𝑎 ∩ 𝑥) = (⦋𝑦 / 𝑥⦌
𝑎 ∩ ⦋𝑦 / 𝑥⦌𝑥)
| | 4:1: | ⊢ ⦋𝑦 / 𝑥⦌𝑎 = 𝑎
| | 5:1: | ⊢ ⦋𝑦 / 𝑥⦌𝑥 = 𝑦
| | 6:4,5: | ⊢ (⦋𝑦 / 𝑥⦌𝑎 ∩ ⦋𝑦 / 𝑥⦌𝑥) = (
𝑎 ∩ 𝑦)
| | 7:3,6: | ⊢ ⦋𝑦 / 𝑥⦌(𝑎 ∩ 𝑥) = (𝑎 ∩ 𝑦)
| | 8:1: | ⊢ ⦋𝑦 / 𝑥⦌∅ = ∅
| | 9:7,8: | ⊢ (⦋𝑦 / 𝑥⦌(𝑎 ∩ 𝑥) = ⦋𝑦 / 𝑥⦌
∅ ↔ (𝑎 ∩ 𝑦) = ∅)
| | 10:2,9: | ⊢ ([𝑦 / 𝑥](𝑎 ∩ 𝑥) = ∅ ↔ (𝑎
∩ 𝑦) = ∅)
| | 11:1: | ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝑎 ↔ 𝑦 ∈ 𝑎)
| | 12:11,10: | ⊢ (([𝑦 / 𝑥]𝑥 ∈ 𝑎 ∧ [𝑦 / 𝑥](
𝑎 ∩ 𝑥) = ∅) ↔ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅))
| | 13:1: | ⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) =
∅) ↔ ([𝑦 / 𝑥]𝑥 ∈ 𝑎 ∧ [𝑦 / 𝑥](𝑎 ∩ 𝑥) = ∅))
| | qed:13,12: | ⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) =
∅) ↔ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅))
|
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ↔ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) |
| |
| Theorem | onfrALTlem3VD 44918* |
Virtual deduction proof of onfrALTlem3 44576.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
onfrALTlem3 44576 is onfrALTlem3VD 44918 without virtual deductions and was
automatically derived from onfrALTlem3VD 44918.
| 1:: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ (𝑎
⊆ On ∧ 𝑎 ≠ ∅) )
| | 2:: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) )
| | 3:2: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ 𝑥 ∈ 𝑎 )
| | 4:1: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ 𝑎 ⊆
On )
| | 5:3,4: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ 𝑥 ∈ On )
| | 6:5: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ Ord 𝑥 )
| | 7:6: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ E We 𝑥 )
| | 8:: | ⊢ (𝑎 ∩ 𝑥) ⊆ 𝑥
| | 9:7,8: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ E We (𝑎 ∩ 𝑥) )
| | 10:9: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ E Fr (𝑎 ∩ 𝑥) )
| | 11:10: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ∀𝑏((𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ 𝑏 ≠
∅) → ∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅) )
| | 12:: | ⊢ 𝑥 ∈ V
| | 13:12,8: | ⊢ (𝑎 ∩ 𝑥) ∈ V
| | 14:13,11: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ [(𝑎 ∩ 𝑥) / 𝑏]((𝑏 ⊆ (𝑎
∩ 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅) )
| | 15:: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]((𝑏 ⊆ (𝑎
∩ 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅) ↔ (((𝑎 ∩
𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ (𝑎 ∩ 𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎 ∩ 𝑥)(
(𝑎 ∩ 𝑥) ∩ 𝑦) = ∅))
| | 16:14,15: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ (((𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ (
𝑎 ∩ 𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦) =
∅) )
| | 17:: | ⊢ (𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥)
| | 18:2: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ¬ (𝑎 ∩ 𝑥) = ∅ )
| | 19:18: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ (𝑎 ∩ 𝑥) ≠ ∅ )
| | 20:17,19: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ((𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ (𝑎 ∩
𝑥) ≠ ∅) )
| | qed:16,20: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦
) = ∅ )
|
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅ ) |
| |
| Theorem | simplbi2comtVD 44919 |
Virtual deduction proof of simplbi2comt 501.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
simplbi2comt 501 is simplbi2comtVD 44919 without virtual deductions and was
automatically derived from simplbi2comtVD 44919.
| 1:: | ⊢ ( (𝜑 ↔ (𝜓 ∧ 𝜒)) ▶ (𝜑 ↔ (
𝜓 ∧ 𝜒)) )
| | 2:1: | ⊢ ( (𝜑 ↔ (𝜓 ∧ 𝜒)) ▶ ((𝜓 ∧ 𝜒
) → 𝜑) )
| | 3:2: | ⊢ ( (𝜑 ↔ (𝜓 ∧ 𝜒)) ▶ (𝜓 → (𝜒
→ 𝜑)) )
| | 4:3: | ⊢ ( (𝜑 ↔ (𝜓 ∧ 𝜒)) ▶ (𝜒 → (𝜓
→ 𝜑)) )
| | qed:4: | ⊢ ((𝜑 ↔ (𝜓 ∧ 𝜒)) → (𝜒 → (𝜓
→ 𝜑)))
|
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ ((𝜑 ↔ (𝜓 ∧ 𝜒)) → (𝜒 → (𝜓 → 𝜑))) |
| |
| Theorem | onfrALTlem2VD 44920* |
Virtual deduction proof of onfrALTlem2 44578.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
onfrALTlem2 44578 is onfrALTlem2VD 44920 without virtual deductions and was
automatically derived from onfrALTlem2VD 44920.
| 1:: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩
𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) ▶ ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩
𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) )
| | 2:1: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩
𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) ▶ 𝑧 ∈ (𝑎 ∩ 𝑦) )
| | 3:2: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩
𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) ▶ 𝑧 ∈ 𝑎 )
| | 4:: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ (𝑎
⊆ On ∧ 𝑎 ≠ ∅) )
| | 5:: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) )
| | 6:5: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ 𝑥 ∈ 𝑎 )
| | 7:4: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ 𝑎 ⊆
On )
| | 8:6,7: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ 𝑥 ∈ On )
| | 9:8: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ Ord 𝑥 )
| | 10:9: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ Tr 𝑥 )
| | 11:1: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩
𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) ▶ 𝑦 ∈ (𝑎 ∩ 𝑥) )
| | 12:11: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩
𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) ▶ 𝑦 ∈ 𝑥 )
| | 13:2: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩
𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) ▶ 𝑧 ∈ 𝑦 )
| | 14:10,12,13: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩
𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) ▶ 𝑧 ∈ 𝑥 )
| | 15:3,14: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩
𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) ▶ 𝑧 ∈ (𝑎 ∩ 𝑥) )
| | 16:13,15: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩
𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) ▶ 𝑧 ∈ ((𝑎 ∩ 𝑥) ∩ 𝑦) )
| | 17:16: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦
) = ∅) ▶ (𝑧 ∈ (𝑎 ∩ 𝑦) → 𝑧 ∈ ((𝑎 ∩ 𝑥) ∩ 𝑦)) )
| | 18:17: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦
) = ∅) ▶ ∀𝑧(𝑧 ∈ (𝑎 ∩ 𝑦) → 𝑧 ∈ ((𝑎 ∩ 𝑥) ∩ 𝑦)) )
| | 19:18: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦
) = ∅) ▶ (𝑎 ∩ 𝑦) ⊆ ((𝑎 ∩ 𝑥) ∩ 𝑦) )
| | 20:: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦
) = ∅) ▶ (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) )
| | 21:20: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦
) = ∅) ▶ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅ )
| | 22:19,21: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦
) = ∅) ▶ (𝑎 ∩ 𝑦) = ∅ )
| | 23:20: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦
) = ∅) ▶ 𝑦 ∈ (𝑎 ∩ 𝑥) )
| | 24:23: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦
) = ∅) ▶ 𝑦 ∈ 𝑎 )
| | 25:22,24: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦
) = ∅) ▶ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅) )
| | 26:25: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥)
∩ 𝑦) = ∅) → (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) )
| | 27:26: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ∀𝑦((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥
) ∩ 𝑦) = ∅) → (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) )
| | 28:27: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ (∃𝑦(𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥
) ∩ 𝑦) = ∅) → ∃𝑦(𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) )
| | 29:: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦
) = ∅ )
| | 30:29: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦(𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥)
∩ 𝑦) = ∅) )
| | 31:28,30: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦(𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅) )
| | qed:31: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅ )
|
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅ ) |
| |
| Theorem | onfrALTlem1VD 44921* |
Virtual deduction proof of onfrALTlem1 44580.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
onfrALTlem1 44580 is onfrALTlem1VD 44921 without virtual deductions and was
automatically derived from onfrALTlem1VD 44921.
| 1:: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧
(𝑎 ∩ 𝑥) = ∅) ▶ (𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) )
| | 2:1: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧
(𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑥(𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) )
| | 3:2: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧
(𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦[𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅)
)
| | 4:: | ⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅
) ↔ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅))
| | 5:4: | ⊢ ∀𝑦([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥)
= ∅) ↔ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅))
| | 6:5: | ⊢ (∃𝑦[𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥)
= ∅) ↔ ∃𝑦(𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅))
| | 7:3,6: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧
(𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦(𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅) )
| | 8:: | ⊢ (∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅ ↔ ∃𝑦(
𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅))
| | qed:7,8: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧
(𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅ )
|
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅ ) |
| |
| Theorem | onfrALTVD 44922 |
Virtual deduction proof of onfrALT 44581.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
onfrALT 44581 is onfrALTVD 44922 without virtual deductions and was
automatically derived from onfrALTVD 44922.
| 1:: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎
∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅ )
| | 2:: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎
∧ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅ )
| | 3:1: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , 𝑥 ∈ 𝑎 ▶
(¬ (𝑎 ∩ 𝑥) = ∅ → ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅) )
| | 4:2: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , 𝑥 ∈ 𝑎 ▶
((𝑎 ∩ 𝑥) = ∅ → ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅) )
| | 5:: | ⊢ ((𝑎 ∩ 𝑥) = ∅ ∨ ¬ (𝑎 ∩ 𝑥) =
∅)
| | 6:5,4,3: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , 𝑥 ∈ 𝑎 ▶
∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅ )
| | 7:6: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ (𝑥 ∈ 𝑎
→ ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅) )
| | 8:7: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ ∀𝑥(𝑥
∈ 𝑎 → ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅) )
| | 9:8: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ (∃𝑥𝑥
∈ 𝑎 → ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅) )
| | 10:: | ⊢ (𝑎 ≠ ∅ ↔ ∃𝑥𝑥 ∈ 𝑎)
| | 11:9,10: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ (𝑎 ≠
∅ → ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅) )
| | 12:: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ (𝑎 ⊆
On ∧ 𝑎 ≠ ∅) )
| | 13:12: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ 𝑎 ≠
∅ )
| | 14:13,11: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ ∃𝑦 ∈
𝑎(𝑎 ∩ 𝑦) = ∅ )
| | 15:14: | ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦 ∈ 𝑎
(𝑎 ∩ 𝑦) = ∅)
| | 16:15: | ⊢ ∀𝑎((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦
∈ 𝑎(𝑎 ∩ 𝑦) = ∅)
| | qed:16: | ⊢ E Fr On
|
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ E Fr
On |
| |
| Theorem | csbeq2gVD 44923 |
Virtual deduction proof of csbeq2 3855.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
csbeq2 3855 is csbeq2gVD 44923 without virtual deductions and was
automatically derived from csbeq2gVD 44923.
| 1:: | ⊢ ( 𝐴 ∈ 𝑉 ▶ 𝐴 ∈ 𝑉 )
| | 2:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (∀𝑥𝐵 = 𝐶 → [𝐴 / 𝑥]
𝐵 = 𝐶) )
| | 3:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴
/ 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) )
| | 4:2,3: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (∀𝑥𝐵 = 𝐶 → ⦋𝐴 / 𝑥
⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) )
| | qed:4: | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝐵 = 𝐶 → ⦋𝐴 / 𝑥⦌
𝐵 = ⦋𝐴 / 𝑥⦌𝐶))
|
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 𝐵 = 𝐶 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) |
| |
| Theorem | csbsngVD 44924 |
Virtual deduction proof of csbsng 4661.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
csbsng 4661 is csbsngVD 44924 without virtual deductions and was automatically
derived from csbsngVD 44924.
| 1:: | ⊢ ( 𝐴 ∈ 𝑉 ▶ 𝐴 ∈ 𝑉 )
| | 2:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝑦 = 𝐵
↔ ⦋𝐴 / 𝑥⦌𝑦 = ⦋𝐴 / 𝑥⦌𝐵) )
| | 3:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌𝑦 = 𝑦 )
| | 4:3: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (⦋𝐴 / 𝑥⦌𝑦 = ⦋𝐴
/ 𝑥⦌𝐵 ↔ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵) )
| | 5:2,4: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝑦 = 𝐵
↔ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵) )
| | 6:5: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ∀𝑦([𝐴 / 𝑥]𝑦
= 𝐵 ↔ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵) )
| | 7:6: | ⊢ ( 𝐴 ∈ 𝑉 ▶ {𝑦 ∣ [𝐴 / 𝑥]𝑦 =
𝐵} = {𝑦 ∣ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵} )
| | 8:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ {𝑦 ∣ [𝐴 / 𝑥]𝑦 =
𝐵} = ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝑦 = 𝐵} )
| | 9:7,8: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝑦
= 𝐵} = {𝑦 ∣ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵} )
| | 10:: | ⊢ {𝐵} = {𝑦 ∣ 𝑦 = 𝐵}
| | 11:10: | ⊢ ∀𝑥{𝐵} = {𝑦 ∣ 𝑦 = 𝐵}
| | 12:1,11: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝐵} = ⦋
𝐴 / 𝑥⦌{𝑦 ∣ 𝑦 = 𝐵} )
| | 13:9,12: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝐵} = {
𝑦 ∣ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵} )
| | 14:: | ⊢ {⦋𝐴 / 𝑥⦌𝐵} = {𝑦 ∣ 𝑦 = ⦋𝐴
/ 𝑥⦌𝐵}
| | 15:13,14: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝐵} = {
⦋𝐴 / 𝑥⦌𝐵} )
| | qed:15: | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝐵} = {⦋
𝐴 / 𝑥⦌𝐵})
|
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝐵} = {⦋𝐴 / 𝑥⦌𝐵}) |
| |
| Theorem | csbxpgVD 44925 |
Virtual deduction proof of csbxp 5716.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
csbxp 5716 is csbxpgVD 44925 without virtual deductions and was
automatically derived from csbxpgVD 44925.
| 1:: | ⊢ ( 𝐴 ∈ 𝑉 ▶ 𝐴 ∈ 𝑉 )
| | 2:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝑤 ∈ 𝐵 ↔
⦋𝐴 / 𝑥⦌𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵) )
| | 3:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌𝑤 = 𝑤 )
| | 4:3: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (⦋𝐴 / 𝑥⦌𝑤 ∈ ⦋𝐴 /
𝑥⦌𝐵 ↔ 𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵) )
| | 5:2,4: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝑤 ∈ 𝐵 ↔ 𝑤
∈ ⦋𝐴 / 𝑥⦌𝐵) )
| | 6:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔
⦋𝐴 / 𝑥⦌𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶) )
| | 7:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌𝑦 = 𝑦 )
| | 8:7: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (⦋𝐴 / 𝑥⦌𝑦 ∈ ⦋𝐴 /
𝑥⦌𝐶 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶) )
| | 9:6,8: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ 𝑦
∈ ⦋𝐴 / 𝑥⦌𝐶) )
| | 10:5,9: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (([𝐴 / 𝑥]𝑤 ∈ 𝐵 ∧
[𝐴 / 𝑥]𝑦 ∈ 𝐶) ↔ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧
𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)) )
| | 11:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧
𝑦 ∈ 𝐶) ↔ ([𝐴 / 𝑥]𝑤 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐶)) )
| | 12:10,11: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧
𝑦 ∈ 𝐶) ↔ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)) )
| | 13:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝑧 = 〈𝑤 ,
𝑦〉 ↔ 𝑧 = 〈𝑤, 𝑦〉) )
| | 14:12,13: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (([𝐴 / 𝑥]𝑧 = 〈𝑤
, 𝑦〉 ∧ [𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑧 = 〈𝑤, 𝑦〉
∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) )
| | 15:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥](𝑧 = 〈𝑤
, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ([𝐴 / 𝑥]𝑧 = 〈𝑤, 𝑦〉
∧ [𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) )
| | 16:14,15: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥](𝑧 = 〈𝑤
, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑧 = 〈𝑤, 𝑦〉 ∧
(𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) )
| | 17:16: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ∀𝑦([𝐴 / 𝑥](𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑧 = 〈𝑤, 𝑦〉 ∧
(𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) )
| | 18:17: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (∃𝑦[𝐴 / 𝑥](𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧
(𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) )
| | 19:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]∃𝑦(𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦[𝐴 / 𝑥](𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) )
| | 20:18,19: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]∃𝑦(𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧
(𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) )
| | 21:20: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ∀𝑤([𝐴 / 𝑥]∃𝑦(
𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦(𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) )
| | 22:21: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (∃𝑤[𝐴 / 𝑥]∃𝑦(
𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤∃𝑦(𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) )
| | 23:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]∃𝑤∃𝑦(
𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤[𝐴 / 𝑥]∃𝑦
(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) )
| | 24:22,23: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]∃𝑤∃𝑦(
𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤∃𝑦(𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) )
| | 25:24: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ∀𝑧([𝐴 / 𝑥]∃𝑤∃
𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤∃𝑦(𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) )
| | 26:25: | ⊢ ( 𝐴 ∈ 𝑉 ▶ {𝑧 ∣ [𝐴 / 𝑥]∃𝑤∃
𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} = {𝑧 ∣ ∃𝑤∃𝑦(
𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))}
)
| | 27:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑤∃
𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} = {𝑧 ∣ [𝐴 / 𝑥]
∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} )
| | 28:26,27: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑤∃
𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} = {𝑧 ∣ ∃𝑤∃𝑦(
𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))}
)
| | 29:: | ⊢ {〈𝑤 , 𝑦〉 ∣ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)}
= {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))}
| | 30:: | ⊢ (𝐵 × 𝐶) = {〈𝑤 , 𝑦〉 ∣ (𝑤 ∈ 𝐵
∧ 𝑦 ∈ 𝐶)}
| | 31:29,30: | ⊢ (𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤
, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))}
| | 32:31: | ⊢ ∀𝑥(𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))}
| | 33:1,32: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) =
⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧
𝑦 ∈ 𝐶))} )
| | 34:28,33: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) =
{𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧
𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))} )
| | 35:: | ⊢ {〈𝑤 , 𝑦〉 ∣ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧
𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)} = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧
(𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))}
| | 36:: | ⊢ (⦋𝐴 / 𝑥⦌𝐵 × ⦋𝐴 / 𝑥⦌𝐶) = {
〈𝑤, 𝑦〉 ∣ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)}
| | 37:35,36: | ⊢ (⦋𝐴 / 𝑥⦌𝐵 × ⦋𝐴 / 𝑥⦌𝐶) = {𝑧
∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧
𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))}
| | 38:34,37: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) =
(⦋𝐴 / 𝑥⦌𝐵 × ⦋𝐴 / 𝑥⦌𝐶) )
| | qed:38: | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) = (
⦋𝐴 / 𝑥⦌𝐵 × ⦋𝐴 / 𝑥⦌𝐶))
|
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 × ⦋𝐴 / 𝑥⦌𝐶)) |
| |
| Theorem | csbresgVD 44926 |
Virtual deduction proof of csbres 5931.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
csbres 5931 is csbresgVD 44926 without virtual deductions and was
automatically derived from csbresgVD 44926.
| 1:: | ⊢ ( 𝐴 ∈ 𝑉 ▶ 𝐴 ∈ 𝑉 )
| | 2:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌V = V )
| | 3:2: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (⦋𝐴 / 𝑥⦌𝐶 × ⦋𝐴 /
𝑥⦌V) = (⦋𝐴 / 𝑥⦌𝐶 × V) )
| | 4:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐶 × V) =
(⦋𝐴 / 𝑥⦌𝐶 × ⦋𝐴 / 𝑥⦌V) )
| | 5:3,4: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐶 × V) =
(⦋𝐴 / 𝑥⦌𝐶 × V) )
| | 6:5: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (⦋𝐴 / 𝑥⦌𝐵 ∩ ⦋𝐴 /
𝑥⦌(𝐶 × V)) =
(⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V)) )
| | 7:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 ×
V)) = (⦋𝐴 / 𝑥⦌𝐵 ∩ ⦋𝐴 / 𝑥⦌(𝐶 × V)) )
| | 8:6,7: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 ×
V)) = (⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V)) )
| | 9:: | ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V))
| | 10:9: | ⊢ ∀𝑥(𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V))
| | 11:1,10: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) =
⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 × V)) )
| | 12:8,11: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶)
= (
⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V)) )
| | 13:: | ⊢ (⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶) = (
⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V))
| | 14:12,13: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) =
(
⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶) )
| | qed:14: | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = (
⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶))
|
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶)) |
| |
| Theorem | csbrngVD 44927 |
Virtual deduction proof of csbrn 6150.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
csbrn 6150 is csbrngVD 44927 without virtual deductions and was
automatically derived from csbrngVD 44927.
| 1:: | ⊢ ( 𝐴 ∈ 𝑉 ▶ 𝐴 ∈ 𝑉 )
| | 2:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]〈𝑤 , 𝑦〉
∈ 𝐵 ↔ ⦋𝐴 / 𝑥⦌〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) )
| | 3:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌〈𝑤 , 𝑦〉 =
〈𝑤, 𝑦〉 )
| | 4:3: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (⦋𝐴 / 𝑥⦌〈𝑤 , 𝑦〉
∈ ⦋𝐴 / 𝑥⦌𝐵 ↔ 〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) )
| | 5:2,4: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]〈𝑤 , 𝑦〉
∈ 𝐵 ↔ 〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) )
| | 6:5: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ∀𝑤([𝐴 / 𝑥]〈𝑤 ,
𝑦〉 ∈ 𝐵 ↔ 〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) )
| | 7:6: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (∃𝑤[𝐴 / 𝑥]〈𝑤 ,
𝑦〉 ∈ 𝐵 ↔ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) )
| | 8:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (∃𝑤[𝐴 / 𝑥]〈𝑤 ,
𝑦〉 ∈ 𝐵 ↔ [𝐴 / 𝑥]∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵) )
| | 9:7,8: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]∃𝑤〈𝑤
, 𝑦〉 ∈ 𝐵 ↔ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) )
| | 10:9: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ∀𝑦([𝐴 / 𝑥]∃𝑤
〈𝑤, 𝑦〉 ∈ 𝐵 ↔ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) )
| | 11:10: | ⊢ ( 𝐴 ∈ 𝑉 ▶ {𝑦 ∣ [𝐴 / 𝑥]∃𝑤〈
𝑤, 𝑦〉 ∈ 𝐵} = {𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵} )
| | 12:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤
〈𝑤, 𝑦〉 ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} )
| | 13:11,12: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤
〈𝑤, 𝑦〉 ∈ 𝐵} = {𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵} )
| | 14:: | ⊢ ran 𝐵 = {𝑦 ∣ ∃𝑤〈𝑤 , 𝑦〉 ∈ 𝐵}
| | 15:14: | ⊢ ∀𝑥ran 𝐵 = {𝑦 ∣ ∃𝑤〈𝑤 , 𝑦〉
∈ 𝐵}
| | 16:1,15: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌ran 𝐵 = ⦋𝐴 /
𝑥⦌{𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} )
| | 17:13,16: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌ran 𝐵 = {𝑦 ∣
∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵} )
| | 18:: | ⊢ ran ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ ∃𝑤〈𝑤
, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵}
| | 19:17,18: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌ran 𝐵 = ran ⦋
𝐴 / 𝑥⦌𝐵 )
| | qed:19: | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌ran 𝐵 = ran ⦋𝐴
/ 𝑥⦌𝐵)
|
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌ran 𝐵 = ran ⦋𝐴 / 𝑥⦌𝐵) |
| |
| Theorem | csbima12gALTVD 44928 |
Virtual deduction proof of csbima12 6028.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
csbima12 6028 is csbima12gALTVD 44928 without virtual deductions and was
automatically derived from csbima12gALTVD 44928.
| 1:: | ⊢ ( 𝐴 ∈ 𝐶 ▶ 𝐴 ∈ 𝐶 )
| | 2:1: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) =
(
⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) )
| | 3:2: | ⊢ ( 𝐴 ∈ 𝐶 ▶
ran ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵)
= ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) )
| | 4:1: | ⊢ ( 𝐴 ∈ 𝐶 ▶
⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵)
= ran ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) )
| | 5:3,4: | ⊢ ( 𝐴 ∈ 𝐶 ▶
⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵)
= ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) )
| | 6:: | ⊢ (𝐹 “ 𝐵) = ran (𝐹 ↾ 𝐵)
| | 7:6: | ⊢ ∀𝑥(𝐹 “ 𝐵) = ran (𝐹 ↾ 𝐵)
| | 8:1,7: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ⦋
𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵) )
| | 9:5,8: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) =
ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) )
| | 10:: | ⊢ (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) = ran
(⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵)
| | 11:9,10: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (
⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) )
| | qed:11: | ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋
𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵))
|
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵)) |
| |
| Theorem | csbunigVD 44929 |
Virtual deduction proof of csbuni 4888.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
csbuni 4888 is csbunigVD 44929 without virtual deductions and was
automatically derived from csbunigVD 44929.
| 1:: | ⊢ ( 𝐴 ∈ 𝑉 ▶ 𝐴 ∈ 𝑉 )
| | 2:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝑧 ∈ 𝑦 ↔ 𝑧
∈ 𝑦) )
| | 3:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ 𝑦
∈ ⦋𝐴 / 𝑥⦌𝐵) )
| | 4:2,3: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (([𝐴 / 𝑥]𝑧 ∈ 𝑦 ∧
[𝐴 / 𝑥]𝑦 ∈ 𝐵) ↔ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)) )
| | 5:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧
𝑦 ∈ 𝐵) ↔ ([𝐴 / 𝑥]𝑧 ∈ 𝑦 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐵)) )
| | 6:4,5: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧
𝑦 ∈ 𝐵) ↔ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)) )
| | 7:6: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ∀𝑦([𝐴 / 𝑥](𝑧 ∈
𝑦 ∧ 𝑦 ∈ 𝐵) ↔ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)) )
| | 8:7: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (∃𝑦[𝐴 / 𝑥](𝑧 ∈
𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)) )
| | 9:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]∃𝑦(𝑧 ∈
𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦[𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) )
| | 10:8,9: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]∃𝑦(𝑧 ∈
𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)) )
| | 11:10: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ∀𝑧([𝐴 / 𝑥]∃𝑦(
𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)) )
| | 12:11: | ⊢ ( 𝐴 ∈ 𝑉 ▶ {𝑧 ∣ [𝐴 / 𝑥]∃𝑦(
𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧
𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)} )
| | 13:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑦(𝑧
∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} = {𝑧 ∣ [𝐴 / 𝑥]∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)}
)
| | 14:12,13: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑦(𝑧
∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧
𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)} )
| | 15:: | ⊢ ∪ 𝐵 = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)}
| | 16:15: | ⊢ ∀𝑥∪ 𝐵 = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈
𝐵)}
| | 17:1,16: | ⊢ ( 𝐴 ∈ 𝑉 ▶ [𝐴 / 𝑥]∪ 𝐵 = {𝑧 ∣
∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} )
| | 18:1,17: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌∪ 𝐵 = ⦋𝐴 /
𝑥⦌{𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} )
| | 19:14,18: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌∪ 𝐵 = {𝑧 ∣
∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)} )
| | 20:: | ⊢ ∪ ⦋𝐴 / 𝑥⦌𝐵 = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦
∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)}
| | 21:19,20: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌∪ 𝐵 = ∪ ⦋𝐴
/ 𝑥⦌𝐵 )
| | qed:21: | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌∪ 𝐵 = ∪ ⦋𝐴 /
𝑥⦌𝐵)
|
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌∪
𝐵 = ∪ ⦋𝐴 / 𝑥⦌𝐵) |
| |
| Theorem | csbfv12gALTVD 44930 |
Virtual deduction proof of csbfv12 6867.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
csbfv12 6867 is csbfv12gALTVD 44930 without virtual deductions and was
automatically derived from csbfv12gALTVD 44930.
| 1:: | ⊢ ( 𝐴 ∈ 𝐶 ▶ 𝐴 ∈ 𝐶 )
| | 2:1: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌{𝑦} = {
𝑦} )
| | 3:1: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹 “ {𝐵
}) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌{𝐵}) )
| | 4:1: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌{𝐵} = {
⦋𝐴 / 𝑥⦌𝐵} )
| | 5:4: | ⊢ ( 𝐴 ∈ 𝐶 ▶ (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴
/ 𝑥⦌{𝐵}) = (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) )
| | 6:3,5: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹 “ {𝐵
}) = (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) )
| | 7:1: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ([𝐴 / 𝑥](𝐹 “ {
𝐵}) = {𝑦} ↔ ⦋𝐴 / 𝑥⦌(𝐹 “ {𝐵}) = ⦋𝐴 / 𝑥⦌{𝑦}) )
| | 8:6,2: | ⊢ ( 𝐴 ∈ 𝐶 ▶ (⦋𝐴 / 𝑥⦌(𝐹 “ {
𝐵}) = ⦋𝐴 / 𝑥⦌{𝑦} ↔ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵})
= {𝑦}) )
| | 9:7,8: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ([𝐴 / 𝑥](𝐹 “ {
𝐵}) = {𝑦} ↔ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) = {𝑦})
)
| | 10:9: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ∀𝑦([𝐴 / 𝑥](𝐹
“ {𝐵}) = {𝑦} ↔ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) =
{𝑦}) )
| | 11:10: | ⊢ ( 𝐴 ∈ 𝐶 ▶ {𝑦 ∣ [𝐴 / 𝑥](𝐹
“ {𝐵}) = {𝑦}} = {𝑦 ∣ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) =
{𝑦}} )
| | 12:1: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌{𝑦 ∣ (𝐹
“ {𝐵}) = {𝑦}} = {𝑦 ∣ [𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}} )
| | 13:11,12: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌{𝑦 ∣ (𝐹
“ {𝐵}) = {𝑦}} = {𝑦 ∣ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) =
{𝑦
}} )
| | 14:13: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ∪ ⦋𝐴 / 𝑥⦌{𝑦 ∣ (
𝐹 “ {𝐵}) = {𝑦}} = ∪ {𝑦 ∣ (⦋𝐴 / 𝑥⦌𝐹 “
{⦋𝐴 / 𝑥⦌𝐵}) =
{𝑦}} )
| | 15:1: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌∪ {𝑦 ∣ (
𝐹 “ {𝐵}) = {𝑦}} = ∪ ⦋𝐴 / 𝑥⦌{𝑦 ∣ (𝐹 “ {𝐵}) =
{𝑦}} )
| | 16:14,15: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌∪ {𝑦 ∣ (
𝐹 “ {𝐵}) = {𝑦}} =
∪ {𝑦 ∣ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) =
{𝑦}} )
| | 17:: | ⊢ (𝐹‘𝐵) =
∪ {𝑦 ∣ (𝐹 “ {𝐵}) =
{𝑦}}
| | 18:17: | ⊢ ∀𝑥(𝐹‘𝐵) = ∪ {𝑦 ∣ (𝐹 “ {𝐵
}) = {𝑦}}
| | 19:1,18: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹‘𝐵)
= ⦋𝐴 / 𝑥⦌∪ {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} )
| | 20:16,19: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹‘𝐵)
= ∪ {𝑦 ∣ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) = {𝑦}} )
| | 21:: | ⊢ (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵) =
∪ {𝑦 ∣ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) = {𝑦}}
| | 22:20,21: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹‘𝐵)
= (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵) )
| | qed:22: | ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) =
(⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵))
|
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵)) |
| |
| Theorem | con5VD 44931 |
Virtual deduction proof of con5 44554.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
con5 44554 is con5VD 44931 without virtual deductions and was automatically
derived from con5VD 44931.
| 1:: | ⊢ ( (𝜑 ↔ ¬ 𝜓) ▶ (𝜑 ↔ ¬ 𝜓) )
| | 2:1: | ⊢ ( (𝜑 ↔ ¬ 𝜓) ▶ (¬ 𝜓 → 𝜑) )
| | 3:2: | ⊢ ( (𝜑 ↔ ¬ 𝜓) ▶ (¬ 𝜑 → ¬ ¬ 𝜓
) )
| | 4:: | ⊢ (𝜓 ↔ ¬ ¬ 𝜓)
| | 5:3,4: | ⊢ ( (𝜑 ↔ ¬ 𝜓) ▶ (¬ 𝜑 → 𝜓) )
| | qed:5: | ⊢ ((𝜑 ↔ ¬ 𝜓) → (¬ 𝜑 → 𝜓))
|
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ ((𝜑 ↔ ¬ 𝜓) → (¬ 𝜑 → 𝜓)) |
| |
| Theorem | relopabVD 44932 |
Virtual deduction proof of relopab 5764.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
relopab 5764 is relopabVD 44932 without virtual deductions and was
automatically derived from relopabVD 44932.
| 1:: | ⊢ ( 𝑦 = 𝑣 ▶ 𝑦 = 𝑣 )
| | 2:1: | ⊢ ( 𝑦 = 𝑣 ▶ 〈𝑥 , 𝑦〉 = 〈𝑥 , 𝑣
〉 )
| | 3:: | ⊢ ( 𝑦 = 𝑣 , 𝑥 = 𝑢 ▶ 𝑥 = 𝑢 )
| | 4:3: | ⊢ ( 𝑦 = 𝑣 , 𝑥 = 𝑢 ▶ 〈𝑥 , 𝑣〉 = 〈
𝑢, 𝑣〉 )
| | 5:2,4: | ⊢ ( 𝑦 = 𝑣 , 𝑥 = 𝑢 ▶ 〈𝑥 , 𝑦〉 = 〈
𝑢, 𝑣〉 )
| | 6:5: | ⊢ ( 𝑦 = 𝑣 , 𝑥 = 𝑢 ▶ (𝑧 = 〈𝑥 , 𝑦
〉 → 𝑧 = 〈𝑢, 𝑣〉) )
| | 7:6: | ⊢ ( 𝑦 = 𝑣 ▶ (𝑥 = 𝑢 → (𝑧 = 〈𝑥 ,
𝑦〉 → 𝑧 = 〈𝑢, 𝑣〉)) )
| | 8:7: | ⊢ (𝑦 = 𝑣 → (𝑥 = 𝑢 → (𝑧 = 〈𝑥 , 𝑦
〉 → 𝑧 = 〈𝑢, 𝑣〉)))
| | 9:8: | ⊢ (∃𝑣𝑦 = 𝑣 → ∃𝑣(𝑥 = 𝑢 → (𝑧
= 〈𝑥, 𝑦〉 → 𝑧 = 〈𝑢, 𝑣〉)))
| | 90:: | ⊢ (𝑣 = 𝑦 ↔ 𝑦 = 𝑣)
| | 91:90: | ⊢ (∃𝑣𝑣 = 𝑦 ↔ ∃𝑣𝑦 = 𝑣)
| | 92:: | ⊢ ∃𝑣𝑣 = 𝑦
| | 10:91,92: | ⊢ ∃𝑣𝑦 = 𝑣
| | 11:9,10: | ⊢ ∃𝑣(𝑥 = 𝑢 → (𝑧 = 〈𝑥 , 𝑦〉 →
𝑧 = 〈𝑢, 𝑣〉))
| | 12:11: | ⊢ (𝑥 = 𝑢 → ∃𝑣(𝑧 = 〈𝑥 , 𝑦〉 →
𝑧 = 〈𝑢, 𝑣〉))
| | 13:: | ⊢ (∃𝑣(𝑧 = 〈𝑥 , 𝑦〉 → 𝑧 = 〈𝑢
, 𝑣〉) → (𝑧 = 〈𝑥, 𝑦〉 → ∃𝑣𝑧 = 〈𝑢, 𝑣〉))
| | 14:12,13: | ⊢ (𝑥 = 𝑢 → (𝑧 = 〈𝑥 , 𝑦〉 → ∃𝑣
𝑧 = 〈𝑢, 𝑣〉))
| | 15:14: | ⊢ (∃𝑢𝑥 = 𝑢 → ∃𝑢(𝑧 = 〈𝑥 , 𝑦
〉 → ∃𝑣𝑧 = 〈𝑢, 𝑣〉))
| | 150:: | ⊢ (𝑢 = 𝑥 ↔ 𝑥 = 𝑢)
| | 151:150: | ⊢ (∃𝑢𝑢 = 𝑥 ↔ ∃𝑢𝑥 = 𝑢)
| | 152:: | ⊢ ∃𝑢𝑢 = 𝑥
| | 16:151,152: | ⊢ ∃𝑢𝑥 = 𝑢
| | 17:15,16: | ⊢ ∃𝑢(𝑧 = 〈𝑥 , 𝑦〉 → ∃𝑣𝑧 = 〈
𝑢, 𝑣〉)
| | 18:17: | ⊢ (𝑧 = 〈𝑥 , 𝑦〉 → ∃𝑢∃𝑣𝑧 = 〈
𝑢, 𝑣〉)
| | 19:18: | ⊢ (∃𝑦𝑧 = 〈𝑥 , 𝑦〉 → ∃𝑦∃𝑢
∃𝑣𝑧 = 〈𝑢, 𝑣〉)
| | 20:: | ⊢ (∃𝑦∃𝑢∃𝑣𝑧 = 〈𝑢 , 𝑣〉 →
∃𝑢∃𝑣𝑧 = 〈𝑢, 𝑣〉)
| | 21:19,20: | ⊢ (∃𝑦𝑧 = 〈𝑥 , 𝑦〉 → ∃𝑢∃𝑣𝑧
= 〈𝑢, 𝑣〉)
| | 22:21: | ⊢ (∃𝑥∃𝑦𝑧 = 〈𝑥 , 𝑦〉 → ∃𝑥
∃𝑢∃𝑣𝑧 = 〈𝑢, 𝑣〉)
| | 23:: | ⊢ (∃𝑥∃𝑢∃𝑣𝑧 = 〈𝑢 , 𝑣〉 →
∃𝑢∃𝑣𝑧 = 〈𝑢, 𝑣〉)
| | 24:22,23: | ⊢ (∃𝑥∃𝑦𝑧 = 〈𝑥 , 𝑦〉 → ∃𝑢
∃𝑣𝑧 = 〈𝑢, 𝑣〉)
| | 25:24: | ⊢ {𝑧 ∣ ∃𝑥∃𝑦𝑧 = 〈𝑥 , 𝑦〉} ⊆
{𝑧 ∣ ∃𝑢∃𝑣𝑧 = 〈𝑢, 𝑣〉}
| | 26:: | ⊢ 𝑥 ∈ V
| | 27:: | ⊢ 𝑦 ∈ V
| | 28:26,27: | ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V)
| | 29:28: | ⊢ (𝑧 = 〈𝑥 , 𝑦〉 ↔ (𝑧 = 〈𝑥 , 𝑦
〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
| | 30:29: | ⊢ (∃𝑦𝑧 = 〈𝑥 , 𝑦〉 ↔ ∃𝑦(𝑧 =
〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
| | 31:30: | ⊢ (∃𝑥∃𝑦𝑧 = 〈𝑥 , 𝑦〉 ↔ ∃𝑥
∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
| | 32:31: | ⊢ {𝑧 ∣ ∃𝑥∃𝑦𝑧 = 〈𝑥 , 𝑦〉} = {
𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))}
| | 320:25,32: | ⊢ {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥 , 𝑦〉 ∧
(𝑥 ∈ V ∧ 𝑦 ∈ V))} ⊆ {𝑧 ∣ ∃𝑢∃𝑣𝑧 = 〈𝑢, 𝑣〉}
| | 33:: | ⊢ 𝑢 ∈ V
| | 34:: | ⊢ 𝑣 ∈ V
| | 35:33,34: | ⊢ (𝑢 ∈ V ∧ 𝑣 ∈ V)
| | 36:35: | ⊢ (𝑧 = 〈𝑢 , 𝑣〉 ↔ (𝑧 = 〈𝑢 , 𝑣
〉 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
| | 37:36: | ⊢ (∃𝑣𝑧 = 〈𝑢 , 𝑣〉 ↔ ∃𝑣(𝑧 =
〈𝑢, 𝑣〉 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
| | 38:37: | ⊢ (∃𝑢∃𝑣𝑧 = 〈𝑢 , 𝑣〉 ↔ ∃𝑢
∃𝑣(𝑧 = 〈𝑢, 𝑣〉 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
| | 39:38: | ⊢ {𝑧 ∣ ∃𝑢∃𝑣𝑧 = 〈𝑢 , 𝑣〉} = {
𝑧 ∣ ∃𝑢∃𝑣(𝑧 = 〈𝑢, 𝑣〉 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))}
| | 40:320,39: | ⊢ {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥 , 𝑦〉 ∧
(𝑥 ∈ V ∧ 𝑦 ∈ V))} ⊆ {𝑧 ∣ ∃𝑢∃𝑣(𝑧 = 〈𝑢, 𝑣〉 ∧
(𝑢 ∈ V ∧ 𝑣 ∈ V))}
| | 41:: | ⊢ {〈𝑥 , 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V
)} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))
}
| | 42:: | ⊢ {〈𝑢 , 𝑣〉 ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V
)} = {𝑧 ∣ ∃𝑢∃𝑣(𝑧 = 〈𝑢, 𝑣〉 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))
}
| | 43:40,41,42: | ⊢ {〈𝑥 , 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V
)} ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V)}
| | 44:: | ⊢ {〈𝑢 , 𝑣〉 ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V
)} = (V × V)
| | 45:43,44: | ⊢ {〈𝑥 , 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V
)} ⊆ (V × V)
| | 46:28: | ⊢ (𝜑 → (𝑥 ∈ V ∧ 𝑦 ∈ V))
| | 47:46: | ⊢ {〈𝑥 , 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥 , 𝑦〉
∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)}
| | 48:45,47: | ⊢ {〈𝑥 , 𝑦〉 ∣ 𝜑} ⊆ (V × V)
| | qed:48: | ⊢ Rel {〈𝑥 , 𝑦〉 ∣ 𝜑}
|
(Contributed by Alan Sare, 9-Jul-2013.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ Rel
{〈𝑥, 𝑦〉 ∣ 𝜑} |
| |
| Theorem | 19.41rgVD 44933 |
Virtual deduction proof of 19.41rg 44582.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. 19.41rg 44582
is 19.41rgVD 44933 without virtual deductions and was automatically derived
from 19.41rgVD 44933. (Contributed by Alan Sare, 8-Feb-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ (𝜓 → (𝜑 → (𝜑 ∧ 𝜓)))
| | 2:1: | ⊢ ((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑 → (
𝜑 ∧ 𝜓))))
| | 3:2: | ⊢ ∀𝑥((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑
→ (𝜑 ∧ 𝜓))))
| | 4:3: | ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥𝜓 →
∀𝑥(𝜑 → (𝜑 ∧ 𝜓))))
| | 5:: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) ▶ ∀𝑥(𝜓
→ ∀𝑥𝜓) )
| | 6:4,5: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) ▶ (∀𝑥𝜓
→ ∀𝑥(𝜑 → (𝜑 ∧ 𝜓))) )
| | 7:: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) , ∀𝑥𝜓 ▶
∀𝑥𝜓 )
| | 8:6,7: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) , ∀𝑥𝜓 ▶
∀𝑥(𝜑 → (𝜑 ∧ 𝜓)) )
| | 9:8: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) , ∀𝑥𝜓 ▶
(∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓)) )
| | 10:9: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) ▶ (∀𝑥𝜓
→ (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) )
| | 11:5: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) ▶ (𝜓 → ∀
𝑥𝜓) )
| | 12:10,11: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) ▶ (𝜓 → (
∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) )
| | 13:12: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) ▶ (∃𝑥𝜑
→ (𝜓 → ∃𝑥(𝜑 ∧ 𝜓))) )
| | 14:13: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) ▶ ((∃𝑥
𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) )
| | qed:14: | ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑
∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓)))
|
|
| ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓))) |
| |
| Theorem | 2pm13.193VD 44934 |
Virtual deduction proof of 2pm13.193 44584.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
2pm13.193 44584 is 2pm13.193VD 44934 without virtual deductions and was
automatically derived from 2pm13.193VD 44934. (Contributed by Alan Sare,
8-Feb-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) )
| | 2:1: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) )
| | 3:2: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ 𝑥 = 𝑢 )
| | 4:1: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑 )
| | 5:3,4: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ 𝑥 = 𝑢) )
| | 6:5: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ ([𝑣 / 𝑦]𝜑 ∧ 𝑥 = 𝑢) )
| | 7:6: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ [𝑣 / 𝑦]𝜑 )
| | 8:2: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ 𝑦 = 𝑣 )
| | 9:7,8: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ ([𝑣 / 𝑦]𝜑 ∧ 𝑦 = 𝑣) )
| | 10:9: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ (𝜑 ∧ 𝑦 = 𝑣) )
| | 11:10: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ 𝜑 )
| | 12:2,11: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) )
| | 13:12: | ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣
/ 𝑦]𝜑) → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
| | 14:: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ ((
𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) )
| | 15:14: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ (𝑥
= 𝑢 ∧ 𝑦 = 𝑣) )
| | 16:15: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ 𝑦 =
𝑣 )
| | 17:14: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ 𝜑
)
| | 18:16,17: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ (
𝜑 ∧ 𝑦 = 𝑣) )
| | 19:18: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ ([
𝑣 / 𝑦]𝜑 ∧ 𝑦 = 𝑣) )
| | 20:15: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ 𝑥 =
𝑢 )
| | 21:19: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ [𝑣
/ 𝑦]𝜑 )
| | 22:20,21: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ ([
𝑣 / 𝑦]𝜑 ∧ 𝑥 = 𝑢) )
| | 23:22: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ ([
𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ 𝑥 = 𝑢) )
| | 24:23: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ [𝑢
/ 𝑥][𝑣 / 𝑦]𝜑 )
| | 25:15,24: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ ((
𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) )
| | 26:25: | ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) → ((𝑥
= 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| | qed:13,26: | ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣
/ 𝑦]𝜑) ↔ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
|
|
| ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) |
| |
| Theorem | hbimpgVD 44935 |
Virtual deduction proof of hbimpg 44586.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbimpg 44586
is hbimpgVD 44935 without virtual deductions and was automatically derived
from hbimpgVD 44935. (Contributed by Alan Sare, 8-Feb-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 →
∀𝑥𝜓)) )
| | 2:1: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ ∀𝑥(𝜑 → ∀𝑥𝜑) )
| | 3:: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)), ¬ 𝜑 ▶ ¬ 𝜑 )
| | 4:2: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ ∀𝑥(¬ 𝜑 → ∀𝑥¬ 𝜑) )
| | 5:4: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ (¬ 𝜑 → ∀𝑥¬ 𝜑) )
| | 6:3,5: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)), ¬ 𝜑 ▶ ∀𝑥¬ 𝜑 )
| | 7:: | ⊢ (¬ 𝜑 → (𝜑 → 𝜓))
| | 8:7: | ⊢ (∀𝑥¬ 𝜑 → ∀𝑥(𝜑 → 𝜓))
| | 9:6,8: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)), ¬ 𝜑 ▶ ∀𝑥(𝜑 → 𝜓) )
| | 10:9: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ (¬ 𝜑 → ∀𝑥(𝜑 → 𝜓)) )
| | 11:: | ⊢ (𝜓 → (𝜑 → 𝜓))
| | 12:11: | ⊢ (∀𝑥𝜓 → ∀𝑥(𝜑 → 𝜓))
| | 13:1: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ ∀𝑥(𝜓 → ∀𝑥𝜓) )
| | 14:13: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ (𝜓 → ∀𝑥𝜓) )
| | 15:14,12: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ (𝜓 → ∀𝑥(𝜑 → 𝜓)) )
| | 16:10,15: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ ((¬ 𝜑 ∨ 𝜓) → ∀𝑥(𝜑 → 𝜓)) )
| | 17:: | ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓))
| | 18:16,17: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ ((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) )
| | 19:: | ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥∀𝑥(
𝜑 → ∀𝑥𝜑))
| | 20:: | ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → ∀𝑥∀𝑥(
𝜓 → ∀𝑥𝜓))
| | 21:19,20: | ⊢ ((∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) → ∀𝑥(∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 →
∀𝑥𝜓)))
| | 22:21,18: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ ∀𝑥((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) )
| | qed:22: | ⊢ ((∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) → ∀𝑥((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)))
|
|
| ⊢
((∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)) → ∀𝑥((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓))) |
| |
| Theorem | hbalgVD 44936 |
Virtual deduction proof of hbalg 44587.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbalg 44587
is hbalgVD 44936 without virtual deductions and was automatically derived
from hbalgVD 44936. (Contributed by Alan Sare, 8-Feb-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ ( ∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦(𝜑
→ ∀𝑥𝜑) )
| | 2:1: | ⊢ ( ∀𝑦(𝜑 → ∀𝑥𝜑) ▶ (∀𝑦𝜑
→ ∀𝑦∀𝑥𝜑) )
| | 3:: | ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑)
| | 4:2,3: | ⊢ ( ∀𝑦(𝜑 → ∀𝑥𝜑) ▶ (∀𝑦𝜑
→ ∀𝑥∀𝑦𝜑) )
| | 5:: | ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦∀𝑦(
𝜑 → ∀𝑥𝜑))
| | 6:5,4: | ⊢ ( ∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦(∀
𝑦𝜑 → ∀𝑥∀𝑦𝜑) )
| | qed:6: | ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦
𝜑 → ∀𝑥∀𝑦𝜑))
|
|
| ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) |
| |
| Theorem | hbexgVD 44937 |
Virtual deduction proof of hbexg 44588.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbexg 44588
is hbexgVD 44937 without virtual deductions and was automatically derived
from hbexgVD 44937. (Contributed by Alan Sare, 8-Feb-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
∀𝑦(𝜑 → ∀𝑥𝜑) )
| | 2:1: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦
∀𝑥(𝜑 → ∀𝑥𝜑) )
| | 3:2: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
(𝜑 → ∀𝑥𝜑) )
| | 4:3: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
(¬ 𝜑 → ∀𝑥¬ 𝜑) )
| | 5:: | ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ↔ ∀𝑦
∀𝑥(𝜑 → ∀𝑥𝜑))
| | 6:: | ⊢ (∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑦
∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑))
| | 7:5: | ⊢ (∀𝑦∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ↔
∀𝑦∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑))
| | 8:5,6,7: | ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦
∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑))
| | 9:8,4: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦
∀𝑥(¬ 𝜑 → ∀𝑥¬ 𝜑) )
| | 10:9: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
∀𝑦(¬ 𝜑 → ∀𝑥¬ 𝜑) )
| | 11:10: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦
(¬ 𝜑 → ∀𝑥¬ 𝜑) )
| | 12:11: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦
(∀𝑦¬ 𝜑 → ∀𝑥∀𝑦¬ 𝜑) )
| | 13:12: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ (∀
𝑦¬ 𝜑 → ∀𝑥∀𝑦¬ 𝜑) )
| | 14:: | ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥
∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑))
| | 15:13,14: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
(∀𝑦¬ 𝜑 → ∀𝑥∀𝑦¬ 𝜑) )
| | 16:15: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
(¬ ∀𝑦¬ 𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑) )
| | 17:16: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ (¬
∀𝑦¬ 𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑) )
| | 18:: | ⊢ (∃𝑦𝜑 ↔ ¬ ∀𝑦¬ 𝜑)
| | 19:17,18: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ (∃
𝑦𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑) )
| | 20:18: | ⊢ (∀𝑥∃𝑦𝜑 ↔ ∀𝑥¬ ∀𝑦¬ 𝜑)
| | 21:19,20: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ (∃
𝑦𝜑 → ∀𝑥∃𝑦𝜑) )
| | 22:8,21: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦
(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) )
| | 23:14,22: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
∀𝑦(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) )
| | qed:23: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
∀𝑦(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) )
|
|
| ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥∀𝑦(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑)) |
| |
| Theorem | ax6e2eqVD 44938* |
The following User's Proof is a Virtual Deduction proof (see wvd1 44601)
completed automatically by a Metamath tools program invoking mmj2 and
the Metamath Proof Assistant. ax6e2eq 44589 is ax6e2eqVD 44938 without virtual
deductions and was automatically derived from ax6e2eqVD 44938.
(Contributed by Alan Sare, 25-Mar-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∀𝑥𝑥 = 𝑦 )
| | 2:: | ⊢ ( ∀𝑥𝑥 = 𝑦 , 𝑥 = 𝑢 ▶ 𝑥 = 𝑢 )
| | 3:1: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ 𝑥 = 𝑦 )
| | 4:2,3: | ⊢ ( ∀𝑥𝑥 = 𝑦 , 𝑥 = 𝑢 ▶ 𝑦 = 𝑢 )
| | 5:2,4: | ⊢ ( ∀𝑥𝑥 = 𝑦 , 𝑥 = 𝑢 ▶ (𝑥 = 𝑢 ∧ 𝑦
= 𝑢) )
| | 6:5: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ (𝑥 = 𝑢 → (𝑥 = 𝑢 ∧
𝑦 = 𝑢)) )
| | 7:6: | ⊢ (∀𝑥𝑥 = 𝑦 → (𝑥 = 𝑢 → (𝑥 = 𝑢 ∧ 𝑦
= 𝑢)))
| | 8:7: | ⊢ (∀𝑥∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑢 → (
𝑥 = 𝑢 ∧ 𝑦 = 𝑢)))
| | 9:: | ⊢ (∀𝑥𝑥 = 𝑦 ↔ ∀𝑥∀𝑥𝑥 = 𝑦)
| | 10:8,9: | ⊢ (∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑢 → (𝑥 = 𝑢
∧ 𝑦 = 𝑢)))
| | 11:1,10: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∀𝑥(𝑥 = 𝑢 → (𝑥 =
𝑢 ∧ 𝑦 = 𝑢)) )
| | 12:11: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ (∃𝑥𝑥 = 𝑢 → ∃𝑥
(𝑥 = 𝑢 ∧ 𝑦 = 𝑢)) )
| | 13:: | ⊢ ∃𝑥𝑥 = 𝑢
| | 14:13,12: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢
) )
| | 140:14: | ⊢ (∀𝑥𝑥 = 𝑦 → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢)
)
| | 141:140: | ⊢ (∀𝑥𝑥 = 𝑦 → ∀𝑥∃𝑥(𝑥 = 𝑢 ∧ 𝑦
= 𝑢))
| | 15:1,141: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∀𝑥∃𝑥(𝑥 = 𝑢 ∧
𝑦 = 𝑢) )
| | 16:1,15: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∀𝑦∃𝑥(𝑥 = 𝑢 ∧
𝑦 = 𝑢) )
| | 17:16: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∃𝑦∃𝑥(𝑥 = 𝑢 ∧
𝑦 = 𝑢) )
| | 18:17: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∃𝑥∃𝑦(𝑥 = 𝑢 ∧
𝑦 = 𝑢) )
| | 19:: | ⊢ ( 𝑢 = 𝑣 ▶ 𝑢 = 𝑣 )
| | 20:: | ⊢ ( 𝑢 = 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ▶ (𝑥 =
𝑢 ∧ 𝑦 = 𝑢) )
| | 21:20: | ⊢ ( 𝑢 = 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ▶ 𝑦 = 𝑢
)
| | 22:19,21: | ⊢ ( 𝑢 = 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ▶ 𝑦 = 𝑣
)
| | 23:20: | ⊢ ( 𝑢 = 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ▶ 𝑥 = 𝑢
)
| | 24:22,23: | ⊢ ( 𝑢 = 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ▶ (𝑥 =
𝑢 ∧ 𝑦 = 𝑣) )
| | 25:24: | ⊢ ( 𝑢 = 𝑣 ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → (
𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| | 26:25: | ⊢ ( 𝑢 = 𝑣 ▶ ∀𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑢)
→ (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| | 27:26: | ⊢ ( 𝑢 = 𝑣 ▶ (∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑢)
→ ∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| | 28:27: | ⊢ ( 𝑢 = 𝑣 ▶ ∀𝑥(∃𝑦(𝑥 = 𝑢 ∧ 𝑦 =
𝑢) → ∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| | 29:28: | ⊢ ( 𝑢 = 𝑣 ▶ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 =
𝑢) → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| | 30:29: | ⊢ (𝑢 = 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑢
) → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))
| | 31:18,30: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ (𝑢 = 𝑣 → ∃𝑥∃𝑦
(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| | qed:31: | ⊢ (∀𝑥𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃𝑦(
𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))
|
|
| ⊢ (∀𝑥 𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) |
| |
| Theorem | ax6e2ndVD 44939* |
The following User's Proof is a Virtual Deduction proof (see wvd1 44601)
completed automatically by a Metamath tools program invoking mmj2 and
the Metamath Proof Assistant. ax6e2nd 44590 is ax6e2ndVD 44939 without virtual
deductions and was automatically derived from ax6e2ndVD 44939.
(Contributed by Alan Sare, 25-Mar-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ ∃𝑦𝑦 = 𝑣
| | 2:: | ⊢ 𝑢 ∈ V
| | 3:1,2: | ⊢ (𝑢 ∈ V ∧ ∃𝑦𝑦 = 𝑣)
| | 4:3: | ⊢ ∃𝑦(𝑢 ∈ V ∧ 𝑦 = 𝑣)
| | 5:: | ⊢ (𝑢 ∈ V ↔ ∃𝑥𝑥 = 𝑢)
| | 6:5: | ⊢ ((𝑢 ∈ V ∧ 𝑦 = 𝑣) ↔ (∃𝑥𝑥 =
𝑢 ∧ 𝑦 = 𝑣))
| | 7:6: | ⊢ (∃𝑦(𝑢 ∈ V ∧ 𝑦 = 𝑣) ↔ ∃𝑦
(∃𝑥𝑥 = 𝑢 ∧ 𝑦 = 𝑣))
| | 8:4,7: | ⊢ ∃𝑦(∃𝑥𝑥 = 𝑢 ∧ 𝑦 = 𝑣)
| | 9:: | ⊢ (𝑧 = 𝑣 → ∀𝑥𝑧 = 𝑣)
| | 10:: | ⊢ (𝑦 = 𝑣 → ∀𝑧𝑦 = 𝑣)
| | 11:: | ⊢ ( 𝑧 = 𝑦 ▶ 𝑧 = 𝑦 )
| | 12:11: | ⊢ ( 𝑧 = 𝑦 ▶ (𝑧 = 𝑣 ↔ 𝑦 = 𝑣) )
| | 120:11: | ⊢ (𝑧 = 𝑦 → (𝑧 = 𝑣 ↔ 𝑦 = 𝑣))
| | 13:9,10,120: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → (𝑦 = 𝑣 → ∀𝑥𝑦
= 𝑣))
| | 14:: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ¬ ∀𝑥𝑥 = 𝑦 )
| | 15:14,13: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ (𝑦 = 𝑣 → ∀𝑥
𝑦 = 𝑣) )
| | 16:15: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → (𝑦 = 𝑣 → ∀𝑥𝑦
= 𝑣))
| | 17:16: | ⊢ (∀𝑥¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑦 = 𝑣
→ ∀𝑥𝑦 = 𝑣))
| | 18:: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥¬ ∀𝑥𝑥 = 𝑦
)
| | 19:17,18: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑦 = 𝑣 → ∀
𝑥𝑦 = 𝑣))
| | 20:14,19: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ∀𝑥(𝑦 = 𝑣 →
∀𝑥𝑦 = 𝑣) )
| | 21:20: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ((∃𝑥𝑥 = 𝑢
∧ 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| | 22:21: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ((∃𝑥𝑥 = 𝑢 ∧
𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))
| | 23:22: | ⊢ (∀𝑦¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦((∃𝑥
𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))
| | 24:: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦¬ ∀𝑥𝑥 = 𝑦
)
| | 25:23,24: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦((∃𝑥𝑥 =
𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))
| | 26:14,25: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ∀𝑦((∃𝑥𝑥
= 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| | 27:26: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ (∃𝑦(∃𝑥𝑥
= 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| | 28:8,27: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ∃𝑦∃𝑥(𝑥 =
𝑢 ∧ 𝑦 = 𝑣) )
| | 29:28: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ∃𝑥∃𝑦(𝑥 =
𝑢 ∧ 𝑦 = 𝑣) )
| | qed:29: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∃𝑥∃𝑦(𝑥 = 𝑢
∧ 𝑦 = 𝑣))
|
|
| ⊢ (¬
∀𝑥 𝑥 = 𝑦 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
| |
| Theorem | ax6e2ndeqVD 44940* |
The following User's Proof is a Virtual Deduction proof (see wvd1 44601)
completed automatically by a Metamath tools program invoking mmj2 and
the Metamath Proof Assistant. ax6e2eq 44589 is ax6e2ndeqVD 44940 without virtual
deductions and was automatically derived from ax6e2ndeqVD 44940.
(Contributed by Alan Sare, 25-Mar-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ ( 𝑢 ≠ 𝑣 ▶ 𝑢 ≠ 𝑣 )
| | 2:: | ⊢ ( 𝑢 ≠ 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ▶ (
𝑥 = 𝑢 ∧ 𝑦 = 𝑣) )
| | 3:2: | ⊢ ( 𝑢 ≠ 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ▶ 𝑥
= 𝑢 )
| | 4:1,3: | ⊢ ( 𝑢 ≠ 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ▶ 𝑥
≠ 𝑣 )
| | 5:2: | ⊢ ( 𝑢 ≠ 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ▶ 𝑦
= 𝑣 )
| | 6:4,5: | ⊢ ( 𝑢 ≠ 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ▶ 𝑥
≠ 𝑦 )
| | 7:: | ⊢ (∀𝑥𝑥 = 𝑦 → 𝑥 = 𝑦)
| | 8:7: | ⊢ (¬ 𝑥 = 𝑦 → ¬ ∀𝑥𝑥 = 𝑦)
| | 9:: | ⊢ (¬ 𝑥 = 𝑦 ↔ 𝑥 ≠ 𝑦)
| | 10:8,9: | ⊢ (𝑥 ≠ 𝑦 → ¬ ∀𝑥𝑥 = 𝑦)
| | 11:6,10: | ⊢ ( 𝑢 ≠ 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ▶
¬ ∀𝑥𝑥 = 𝑦 )
| | 12:11: | ⊢ ( 𝑢 ≠ 𝑣 ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣)
→ ¬ ∀𝑥𝑥 = 𝑦) )
| | 13:12: | ⊢ ( 𝑢 ≠ 𝑣 ▶ ∀𝑥((𝑥 = 𝑢 ∧ 𝑦 =
𝑣) → ¬ ∀𝑥𝑥 = 𝑦) )
| | 14:13: | ⊢ ( 𝑢 ≠ 𝑣 ▶ (∃𝑥(𝑥 = 𝑢 ∧ 𝑦 =
𝑣) → ∃𝑥¬ ∀𝑥𝑥 = 𝑦) )
| | 15:: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥¬ ∀𝑥𝑥 = 𝑦
)
| | 19:15: | ⊢ (∃𝑥¬ ∀𝑥𝑥 = 𝑦 ↔ ¬ ∀𝑥𝑥 =
𝑦)
| | 20:14,19: | ⊢ ( 𝑢 ≠ 𝑣 ▶ (∃𝑥(𝑥 = 𝑢 ∧ 𝑦 =
𝑣) → ¬ ∀𝑥𝑥 = 𝑦) )
| | 21:20: | ⊢ ( 𝑢 ≠ 𝑣 ▶ ∀𝑦(∃𝑥(𝑥 = 𝑢 ∧
𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦) )
| | 22:21: | ⊢ ( 𝑢 ≠ 𝑣 ▶ (∃𝑦∃𝑥(𝑥 = 𝑢 ∧
𝑦 = 𝑣) → ∃𝑦¬ ∀𝑥𝑥 = 𝑦) )
| | 23:: | ⊢ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ↔ ∃
𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))
| | 24:22,23: | ⊢ ( 𝑢 ≠ 𝑣 ▶ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧
𝑦 = 𝑣) → ∃𝑦¬ ∀𝑥𝑥 = 𝑦) )
| | 25:: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦¬ ∀𝑥𝑥 = 𝑦
)
| | 26:25: | ⊢ (∃𝑦¬ ∀𝑥𝑥 = 𝑦 → ∃𝑦∀𝑦¬
∀𝑥𝑥 = 𝑦)
| | 260:: | ⊢ (∀𝑦¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦∀𝑦¬
∀𝑥𝑥 = 𝑦)
| | 27:260: | ⊢ (∃𝑦∀𝑦¬ ∀𝑥𝑥 = 𝑦 ↔ ∀𝑦¬
∀𝑥𝑥 = 𝑦)
| | 270:26,27: | ⊢ (∃𝑦¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦¬ ∀𝑥
𝑥 = 𝑦)
| | 28:: | ⊢ (∀𝑦¬ ∀𝑥𝑥 = 𝑦 → ¬ ∀𝑥𝑥 = 𝑦
)
| | 29:270,28: | ⊢ (∃𝑦¬ ∀𝑥𝑥 = 𝑦 → ¬ ∀𝑥𝑥 = 𝑦
)
| | 30:24,29: | ⊢ ( 𝑢 ≠ 𝑣 ▶ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧
𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦) )
| | 31:30: | ⊢ ( 𝑢 ≠ 𝑣 ▶ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧
𝑦 = 𝑣) → (¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣)) )
| | 32:31: | ⊢ (𝑢 ≠ 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦
= 𝑣) → (¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣)))
| | 33:: | ⊢ ( 𝑢 = 𝑣 ▶ 𝑢 = 𝑣 )
| | 34:33: | ⊢ ( 𝑢 = 𝑣 ▶ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦
= 𝑣) → 𝑢 = 𝑣) )
| | 35:34: | ⊢ ( 𝑢 = 𝑣 ▶ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦
= 𝑣) → (¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣)) )
| | 36:35: | ⊢ (𝑢 = 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 =
𝑣) → (¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣)))
| | 37:: | ⊢ (𝑢 = 𝑣 ∨ 𝑢 ≠ 𝑣)
| | 38:32,36,37: | ⊢ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (
¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣))
| | 39:: | ⊢ (∀𝑥𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃𝑦
(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))
| | 40:: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∃𝑥∃𝑦(𝑥 = 𝑢
∧ 𝑦 = 𝑣))
| | 41:40: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃
𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))
| | 42:: | ⊢ (∀𝑥𝑥 = 𝑦 ∨ ¬ ∀𝑥𝑥 = 𝑦)
| | 43:39,41,42: | ⊢ (𝑢 = 𝑣 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣
))
| | 44:40,43: | ⊢ ((¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣) → ∃𝑥
∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))
| | qed:38,44: | ⊢ ((¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣) ↔ ∃𝑥
∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))
|
|
| ⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) ↔ ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
| |
| Theorem | 2sb5ndVD 44941* |
The following User's Proof is a Virtual Deduction proof (see wvd1 44601)
completed automatically by a Metamath tools program invoking mmj2 and
the Metamath Proof Assistant. 2sb5nd 44592 is 2sb5ndVD 44941 without virtual
deductions and was automatically derived from 2sb5ndVD 44941.
(Contributed by Alan Sare, 30-Apr-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
| | 2:1: | ⊢ (∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 /
𝑥][𝑣 / 𝑦]𝜑) ↔ ∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
| | 3:: | ⊢ ([𝑣 / 𝑦]𝜑 → ∀𝑦[𝑣 / 𝑦]𝜑)
| | 4:3: | ⊢ [𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 → ∀𝑦[𝑣
/ 𝑦]𝜑)
| | 5:4: | ⊢ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → [𝑢 / 𝑥]
∀𝑦[𝑣 / 𝑦]𝜑)
| | 6:: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ¬ ∀𝑥𝑥 = 𝑦 )
| | 7:: | ⊢ (∀𝑦𝑦 = 𝑥 → ∀𝑥𝑥 = 𝑦)
| | 8:7: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ¬ ∀𝑦𝑦 = 𝑥)
| | 9:6,8: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ¬ ∀𝑦𝑦 = 𝑥 )
| | 10:9: | ⊢ ([𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑 ↔ ∀
𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
| | 11:5,10: | ⊢ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢
/ 𝑥][𝑣 / 𝑦]𝜑)
| | 12:11: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ([𝑢 / 𝑥][𝑣 /
𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| | 13:: | ⊢ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑥[𝑢
/ 𝑥][𝑣 / 𝑦]𝜑)
| | 14:: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∀𝑥𝑥 = 𝑦 )
| | 15:14: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ (∀𝑥[𝑢 / 𝑥][
𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑) )
| | 16:13,15: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ([𝑢 / 𝑥][𝑣 / 𝑦
]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑) )
| | 17:16: | ⊢ (∀𝑥𝑥 = 𝑦 → ([𝑢 / 𝑥][𝑣 / 𝑦]
𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| | 19:12,17: | ⊢ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢
/ 𝑥][𝑣 / 𝑦]𝜑)
| | 20:19: | ⊢ (∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 /
𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| | 21:2,20: | ⊢ (∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)
↔ (∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| | 22:21: | ⊢ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
𝜑) ↔ ∃𝑥(∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| | 23:13: | ⊢ (∃𝑥(∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [
𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| | 24:22,23: | ⊢ ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [
𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
| | 240:24: | ⊢ ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (
∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) ↔
(∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
𝜑)))
| | 241:: | ⊢ ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (
∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) ↔
(∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| | 242:241,240: | ⊢ ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [
𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)))
| | 243:: | ⊢ ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (
[𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
𝜑))) ↔ ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
[𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))))
| | 25:242,243: | ⊢ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ([
𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)))
| | 26:: | ⊢ ((¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣) ↔ ∃𝑥
∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))
| | qed:25,26: | ⊢ ((¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣) → ([𝑢
/ 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)))
|
|
| ⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))) |
| |
| Theorem | 2uasbanhVD 44942* |
The following User's Proof is a Virtual Deduction proof (see wvd1 44601)
completed automatically by a Metamath tools program invoking mmj2 and
the Metamath Proof Assistant. 2uasbanh 44593 is 2uasbanhVD 44942 without
virtual deductions and was automatically derived from 2uasbanhVD 44942.
(Contributed by Alan Sare, 31-May-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
| h1:: | ⊢ (𝜒 ↔ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 =
𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)))
| | 100:1: | ⊢ (𝜒 → (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 =
𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)))
| | 2:100: | ⊢ ( 𝜒 ▶ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦
= 𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)) )
| | 3:2: | ⊢ ( 𝜒 ▶ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 =
𝑣) ∧ 𝜑) )
| | 4:3: | ⊢ ( 𝜒 ▶ ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣
) )
| | 5:4: | ⊢ ( 𝜒 ▶ (¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣)
)
| | 6:5: | ⊢ ( 𝜒 ▶ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑
↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) )
| | 7:3,6: | ⊢ ( 𝜒 ▶ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑 )
| | 8:2: | ⊢ ( 𝜒 ▶ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 =
𝑣) ∧ 𝜓) )
| | 9:5: | ⊢ ( 𝜒 ▶ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜓
↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)) )
| | 10:8,9: | ⊢ ( 𝜒 ▶ [𝑢 / 𝑥][𝑣 / 𝑦]𝜓 )
| | 101:: | ⊢ ([𝑣 / 𝑦](𝜑 ∧ 𝜓) ↔ ([𝑣 /
𝑦]𝜑 ∧ [𝑣 / 𝑦]𝜓))
| | 102:101: | ⊢ ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑 ∧ 𝜓)
↔ [𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 ∧ [𝑣 / 𝑦]𝜓))
| | 103:: | ⊢ ([𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 ∧ [𝑣 / 𝑦
]𝜓) ↔ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜓))
| | 104:102,103: | ⊢ ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑 ∧ 𝜓)
↔ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜓))
| | 11:7,10,104: | ⊢ ( 𝜒 ▶ [𝑢 / 𝑥][𝑣 / 𝑦](𝜑 ∧
𝜓) )
| | 110:5: | ⊢ ( 𝜒 ▶ ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑
∧ 𝜓) ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓))) )
| | 12:11,110: | ⊢ ( 𝜒 ▶ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 =
𝑣) ∧ (𝜑 ∧ 𝜓)) )
| | 120:12: | ⊢ (𝜒 → ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣
) ∧ (𝜑 ∧ 𝜓)))
| | 13:1,120: | ⊢ ((∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)) →
∃𝑥∃𝑦((𝑥 = 𝑢
∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)))
| | 14:: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)) )
| | 15:14: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) ▶ (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) )
| | 16:14: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) ▶ (𝜑 ∧ 𝜓) )
| | 17:16: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) ▶ 𝜑 )
| | 18:15,17: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) )
| | 19:18: | ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
| | 20:19: | ⊢ (∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑
∧ 𝜓)) → ∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
| | 21:20: | ⊢ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (
𝜑 ∧ 𝜓)) → ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
| | 22:16: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) ▶ 𝜓 )
| | 23:15,22: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓) )
| | 24:23: | ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓))
| | 25:24: | ⊢ (∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑
∧ 𝜓)) → ∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓))
| | 26:25: | ⊢ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (
𝜑 ∧ 𝜓)) → ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓))
| | 27:21,26: | ⊢ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (
𝜑 ∧ 𝜓)) → (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ∧
∃𝑥∃𝑦(
(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)))
| | qed:13,27: | ⊢ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (
𝜑 ∧ 𝜓)) ↔ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ∧
∃𝑥∃𝑦(
(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)))
|
|
| ⊢ (𝜒 ↔ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓))) ⇒ ⊢ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)) ↔ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓))) |
| |
| Theorem | e2ebindVD 44943 |
The following User's Proof is a Virtual Deduction proof (see wvd1 44601)
completed automatically by a Metamath tools program invoking mmj2 and the
Metamath Proof Assistant. e2ebind 44595 is e2ebindVD 44943 without virtual
deductions and was automatically derived from e2ebindVD 44943.
| 1:: | ⊢ (𝜑 ↔ 𝜑)
| | 2:1: | ⊢ (∀𝑦𝑦 = 𝑥 → (𝜑 ↔ 𝜑))
| | 3:2: | ⊢ (∀𝑦𝑦 = 𝑥 → (∃𝑦𝜑 ↔ ∃𝑥𝜑
))
| | 4:: | ⊢ ( ∀𝑦𝑦 = 𝑥 ▶ ∀𝑦𝑦 = 𝑥 )
| | 5:3,4: | ⊢ ( ∀𝑦𝑦 = 𝑥 ▶ (∃𝑦𝜑 ↔ ∃𝑥
𝜑) )
| | 6:: | ⊢ (∀𝑦𝑦 = 𝑥 → ∀𝑦∀𝑦𝑦 = 𝑥)
| | 7:5,6: | ⊢ ( ∀𝑦𝑦 = 𝑥 ▶ ∀𝑦(∃𝑦𝜑 ↔
∃𝑥𝜑) )
| | 8:7: | ⊢ ( ∀𝑦𝑦 = 𝑥 ▶ (∃𝑦∃𝑦𝜑 ↔
∃𝑦∃𝑥𝜑) )
| | 9:: | ⊢ (∃𝑦∃𝑥𝜑 ↔ ∃𝑥∃𝑦𝜑)
| | 10:8,9: | ⊢ ( ∀𝑦𝑦 = 𝑥 ▶ (∃𝑦∃𝑦𝜑 ↔
∃𝑥∃𝑦𝜑) )
| | 11:: | ⊢ (∃𝑦𝜑 → ∀𝑦∃𝑦𝜑)
| | 12:11: | ⊢ (∃𝑦∃𝑦𝜑 ↔ ∃𝑦𝜑)
| | 13:10,12: | ⊢ ( ∀𝑦𝑦 = 𝑥 ▶ (∃𝑥∃𝑦𝜑 ↔
∃𝑦𝜑) )
| | 14:13: | ⊢ (∀𝑦𝑦 = 𝑥 → (∃𝑥∃𝑦𝜑 ↔ ∃
𝑦𝜑))
| | 15:: | ⊢ (∀𝑦𝑦 = 𝑥 ↔ ∀𝑥𝑥 = 𝑦)
| | qed:14,15: | ⊢ (∀𝑥𝑥 = 𝑦 → (∃𝑥∃𝑦𝜑 ↔ ∃
𝑦𝜑))
|
(Contributed by Alan Sare, 27-Nov-2014.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥∃𝑦𝜑 ↔ ∃𝑦𝜑)) |
| |
| 21.41.8 Virtual Deduction transcriptions of
textbook proofs
|
| |
| Theorem | sb5ALTVD 44944* |
The following User's Proof is a Natural Deduction Sequent Calculus
transcription of the Fitch-style Natural Deduction proof of Unit 20
Excercise 3.a., which is sb5 2278, found in the "Answers to Starred
Exercises" on page 457 of "Understanding Symbolic Logic", Fifth
Edition (2008), by Virginia Klenk. The same proof may also be
interpreted as a Virtual Deduction Hilbert-style axiomatic proof. It
was completed automatically by the tools program completeusersproof.cmd,
which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof
Assistant. sb5ALT 44557 is sb5ALTVD 44944 without virtual deductions and
was automatically derived from sb5ALTVD 44944.
| 1:: | ⊢ ( [𝑦 / 𝑥]𝜑 ▶ [𝑦 / 𝑥]𝜑 )
| | 2:: | ⊢ [𝑦 / 𝑥]𝑥 = 𝑦
| | 3:1,2: | ⊢ ( [𝑦 / 𝑥]𝜑 ▶ [𝑦 / 𝑥](𝑥 = 𝑦
∧ 𝜑) )
| | 4:3: | ⊢ ( [𝑦 / 𝑥]𝜑 ▶ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑
) )
| | 5:4: | ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)
)
| | 6:: | ⊢ ( ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ▶ ∃𝑥(𝑥 =
𝑦 ∧ 𝜑) )
| | 7:: | ⊢ ( ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) , (𝑥 = 𝑦 ∧ 𝜑
) ▶ (𝑥 = 𝑦 ∧ 𝜑) )
| | 8:7: | ⊢ ( ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) , (𝑥 = 𝑦 ∧ 𝜑
) ▶ 𝜑 )
| | 9:7: | ⊢ ( ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) , (𝑥 = 𝑦 ∧ 𝜑
) ▶ 𝑥 = 𝑦 )
| | 10:8,9: | ⊢ ( ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) , (𝑥 = 𝑦 ∧ 𝜑
) ▶ [𝑦 / 𝑥]𝜑 )
| | 101:: | ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
| | 11:101,10: | ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → [𝑦 / 𝑥]𝜑
)
| | 12:5,11: | ⊢ (([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑
)) ∧ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → [𝑦 / 𝑥]𝜑))
| | qed:12: | ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)
)
|
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
| |
| Theorem | vk15.4jVD 44945 |
The following User's Proof is a Natural Deduction Sequent Calculus
transcription of the Fitch-style Natural Deduction proof of Unit 15
Excercise 4.f. found in the "Answers to Starred Exercises" on page 442
of "Understanding Symbolic Logic", Fifth Edition (2008), by Virginia
Klenk. The same proof may also be interpreted to be a Virtual Deduction
Hilbert-style axiomatic proof. It was completed automatically by the
tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2
and Norm Megill's Metamath Proof Assistant. vk15.4j 44560 is vk15.4jVD 44945
without virtual deductions and was automatically derived
from vk15.4jVD 44945. Step numbers greater than 25 are additional steps
necessary for the sequent calculus proof not contained in the
Fitch-style proof. Otherwise, step i of the User's Proof corresponds to
step i of the Fitch-style proof.
| h1:: | ⊢ ¬ (∃𝑥¬ 𝜑 ∧ ∃𝑥(𝜓 ∧
¬ 𝜒))
| | h2:: | ⊢ (∀𝑥𝜒 → ¬ ∃𝑥(𝜃 ∧ 𝜏
))
| | h3:: | ⊢ ¬ ∀𝑥(𝜏 → 𝜑)
| | 4:: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ¬ ∃𝑥¬
𝜃 )
| | 5:4: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ∀𝑥𝜃 )
| | 6:3: | ⊢ ∃𝑥(𝜏 ∧ ¬ 𝜑)
| | 7:: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , (𝜏 ∧ ¬
𝜑) ▶ (𝜏 ∧ ¬ 𝜑) )
| | 8:7: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , (𝜏 ∧ ¬
𝜑) ▶ 𝜏 )
| | 9:7: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , (𝜏 ∧ ¬
𝜑) ▶ ¬ 𝜑 )
| | 10:5: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ 𝜃 )
| | 11:10,8: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , (𝜏 ∧ ¬
𝜑) ▶ (𝜃 ∧ 𝜏) )
| | 12:11: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , (𝜏 ∧ ¬
𝜑) ▶ ∃𝑥(𝜃 ∧ 𝜏) )
| | 13:12: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , (𝜏 ∧ ¬
𝜑) ▶ ¬ ¬ ∃𝑥(𝜃 ∧ 𝜏) )
| | 14:2,13: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , (𝜏 ∧ ¬
𝜑) ▶ ¬ ∀𝑥𝜒 )
| | 140:: | ⊢ (∃𝑥¬ 𝜃 → ∀𝑥∃𝑥¬ 𝜃
)
| | 141:140: | ⊢ (¬ ∃𝑥¬ 𝜃 → ∀𝑥¬ ∃𝑥
¬ 𝜃)
| | 142:: | ⊢ (∀𝑥𝜒 → ∀𝑥∀𝑥𝜒)
| | 143:142: | ⊢ (¬ ∀𝑥𝜒 → ∀𝑥¬ ∀𝑥𝜒
)
| | 144:6,14,141,143: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ¬ ∀𝑥𝜒
)
| | 15:1: | ⊢ (¬ ∃𝑥¬ 𝜑 ∨ ¬ ∃𝑥(𝜓
∧ ¬ 𝜒))
| | 16:9: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , (𝜏 ∧ ¬
𝜑) ▶ ∃𝑥¬ 𝜑 )
| | 161:: | ⊢ (∃𝑥¬ 𝜑 → ∀𝑥∃𝑥¬ 𝜑
)
| | 162:6,16,141,161: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ∃𝑥¬ 𝜑
)
| | 17:162: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ¬ ¬ ∃𝑥
¬ 𝜑 )
| | 18:15,17: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ¬ ∃𝑥(
𝜓 ∧ ¬ 𝜒) )
| | 19:18: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ∀𝑥(𝜓
→ 𝜒) )
| | 20:144: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ∃𝑥¬ 𝜒
)
| | 21:: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , ¬ 𝜒 ▶ ¬
𝜒 )
| | 22:19: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ (𝜓 → 𝜒
) )
| | 23:21,22: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , ¬ 𝜒 ▶ ¬
𝜓 )
| | 24:23: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , ¬ 𝜒 ▶ ∃
𝑥¬ 𝜓 )
| | 240:: | ⊢ (∃𝑥¬ 𝜓 → ∀𝑥∃𝑥¬ 𝜓
)
| | 241:20,24,141,240: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ∃𝑥¬ 𝜓
)
| | 25:241: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ¬ ∀𝑥𝜓
)
| | qed:25: | ⊢ (¬ ∃𝑥¬ 𝜃 → ¬ ∀𝑥𝜓)
|
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ ¬
(∃𝑥 ¬ 𝜑 ∧ ∃𝑥(𝜓 ∧ ¬ 𝜒)) & ⊢ (∀𝑥𝜒 → ¬ ∃𝑥(𝜃 ∧ 𝜏)) & ⊢ ¬
∀𝑥(𝜏 → 𝜑) ⇒ ⊢ (¬ ∃𝑥 ¬ 𝜃 → ¬ ∀𝑥𝜓) |
| |
| Theorem | notnotrALTVD 44946 |
The following User's Proof is a Natural Deduction Sequent Calculus
transcription of the Fitch-style Natural Deduction proof of Theorem 5 of
Section 14 of [Margaris] p. 59 (which is notnotr 130). The same proof
may also be interpreted as a Virtual Deduction Hilbert-style
axiomatic proof. It was completed automatically by the tools program
completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm
Megill's Metamath Proof Assistant. notnotrALT 44561 is notnotrALTVD 44946
without virtual deductions and was automatically derived
from notnotrALTVD 44946. Step i of the User's Proof corresponds to
step i of the Fitch-style proof.
| 1:: | ⊢ ( ¬ ¬ 𝜑 ▶ ¬ ¬ 𝜑 )
| | 2:: | ⊢ (¬ ¬ 𝜑 → (¬ 𝜑 → ¬ ¬ ¬ 𝜑))
| | 3:1: | ⊢ ( ¬ ¬ 𝜑 ▶ (¬ 𝜑 → ¬ ¬ ¬ 𝜑) )
| | 4:: | ⊢ ((¬ 𝜑 → ¬ ¬ ¬ 𝜑) → (¬ ¬ 𝜑 →
𝜑))
| | 5:3: | ⊢ ( ¬ ¬ 𝜑 ▶ (¬ ¬ 𝜑 → 𝜑) )
| | 6:5,1: | ⊢ ( ¬ ¬ 𝜑 ▶ 𝜑 )
| | qed:6: | ⊢ (¬ ¬ 𝜑 → 𝜑)
|
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (¬ ¬
𝜑 → 𝜑) |
| |
| Theorem | con3ALTVD 44947 |
The following User's Proof is a Natural Deduction Sequent Calculus
transcription of the Fitch-style Natural Deduction proof of Theorem 7 of
Section 14 of [Margaris] p. 60 (which is con3 153). The same proof may
also be interpreted to be a Virtual Deduction Hilbert-style axiomatic
proof. It was completed automatically by the tools program
completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm
Megill's Metamath Proof Assistant. con3ALT2 44562 is con3ALTVD 44947 without
virtual deductions and was automatically derived from con3ALTVD 44947.
Step i of the User's Proof corresponds to step i of the Fitch-style proof.
| 1:: | ⊢ ( (𝜑 → 𝜓) ▶ (𝜑 → 𝜓) )
| | 2:: | ⊢ ( (𝜑 → 𝜓) , ¬ ¬ 𝜑 ▶ ¬ ¬ 𝜑 )
| | 3:: | ⊢ (¬ ¬ 𝜑 → 𝜑)
| | 4:2: | ⊢ ( (𝜑 → 𝜓) , ¬ ¬ 𝜑 ▶ 𝜑 )
| | 5:1,4: | ⊢ ( (𝜑 → 𝜓) , ¬ ¬ 𝜑 ▶ 𝜓 )
| | 6:: | ⊢ (𝜓 → ¬ ¬ 𝜓)
| | 7:6,5: | ⊢ ( (𝜑 → 𝜓) , ¬ ¬ 𝜑 ▶ ¬ ¬ 𝜓 )
| | 8:7: | ⊢ ( (𝜑 → 𝜓) ▶ (¬ ¬ 𝜑 → ¬ ¬ 𝜓
) )
| | 9:: | ⊢ ((¬ ¬ 𝜑 → ¬ ¬ 𝜓) → (¬ 𝜓 →
¬ 𝜑))
| | 10:8: | ⊢ ( (𝜑 → 𝜓) ▶ (¬ 𝜓 → ¬ 𝜑) )
| | qed:10: | ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑))
|
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) |
| |
| 21.41.9 Theorems proved using conjunction-form
Virtual Deduction
|
| |
| Theorem | elpwgdedVD 44948 |
Membership in a power class. Theorem 86 of [Suppes] p. 47. Derived
from elpwg 4553. In form of VD deduction with 𝜑 and 𝜓 as
variable virtual hypothesis collections based on Mario Carneiro's
metavariable concept. elpwgded 44596 is elpwgdedVD 44948 using conventional
notation. (Contributed by Alan Sare, 23-Apr-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ ( 𝜑 ▶ 𝐴 ∈ V ) & ⊢ ( 𝜓 ▶ 𝐴 ⊆ 𝐵 )
⇒ ⊢ ( ( 𝜑 , 𝜓 ) ▶ 𝐴 ∈ 𝒫 𝐵 ) |
| |
| Theorem | sspwimp 44949 |
If a class is a subclass of another class, then its power class is a
subclass of that other class's power class. Left-to-right implication
of Exercise 18 of [TakeutiZaring]
p. 18. For the biconditional, see
sspwb 5390. The proof sspwimp 44949, using conventional notation, was
translated from virtual deduction form, sspwimpVD 44950, using a
translation program. (Contributed by Alan Sare, 23-Apr-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| |
| Theorem | sspwimpVD 44950 |
The following User's Proof is a Virtual Deduction proof (see wvd1 44601)
using conjunction-form virtual hypothesis collections. It was completed
manually, but has the potential to be completed automatically by a tools
program which would invoke Mel L. O'Cat's mmj2 and Norm Megill's
Metamath Proof Assistant.
sspwimp 44949 is sspwimpVD 44950 without virtual deductions and was derived
from sspwimpVD 44950. (Contributed by Alan Sare, 23-Apr-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ ( 𝐴 ⊆ 𝐵 ▶ 𝐴 ⊆ 𝐵 )
| | 2:: | ⊢ ( .............. 𝑥 ∈ 𝒫 𝐴
▶ 𝑥 ∈ 𝒫 𝐴 )
| | 3:2: | ⊢ ( .............. 𝑥 ∈ 𝒫 𝐴
▶ 𝑥 ⊆ 𝐴 )
| | 4:3,1: | ⊢ ( ( 𝐴 ⊆ 𝐵 , 𝑥 ∈ 𝒫 𝐴 ) ▶ 𝑥 ⊆ 𝐵 )
| | 5:: | ⊢ 𝑥 ∈ V
| | 6:4,5: | ⊢ ( ( 𝐴 ⊆ 𝐵 , 𝑥 ∈ 𝒫 𝐴 ) ▶ 𝑥 ∈ 𝒫 𝐵
)
| | 7:6: | ⊢ ( 𝐴 ⊆ 𝐵 ▶ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵)
)
| | 8:7: | ⊢ ( 𝐴 ⊆ 𝐵 ▶ ∀𝑥(𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈
𝒫 𝐵) )
| | 9:8: | ⊢ ( 𝐴 ⊆ 𝐵 ▶ 𝒫 𝐴 ⊆ 𝒫 𝐵 )
| | qed:9: | ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
|
|
| ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| |
| Theorem | sspwimpcf 44951 |
If a class is a subclass of another class, then its power class is a
subclass of that other class's power class. Left-to-right implication
of Exercise 18 of [TakeutiZaring]
p. 18. sspwimpcf 44951, using
conventional notation, was translated from its virtual deduction form,
sspwimpcfVD 44952, using a translation program. (Contributed
by Alan Sare,
13-Jun-2015.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| |
| Theorem | sspwimpcfVD 44952 |
The following User's Proof is a Virtual Deduction proof (see wvd1 44601)
using conjunction-form virtual hypothesis collections. It was completed
automatically by a tools program which would invokes Mel L. O'Cat's mmj2
and Norm Megill's Metamath Proof Assistant.
sspwimpcf 44951 is sspwimpcfVD 44952 without virtual deductions and was derived
from sspwimpcfVD 44952.
The version of completeusersproof.cmd used is capable of only generating
conjunction-form unification theorems, not unification deductions.
(Contributed by Alan Sare, 13-Jun-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ ( 𝐴 ⊆ 𝐵 ▶ 𝐴 ⊆ 𝐵 )
| | 2:: | ⊢ ( ........... 𝑥 ∈ 𝒫 𝐴
▶ 𝑥 ∈ 𝒫 𝐴 )
| | 3:2: | ⊢ ( ........... 𝑥 ∈ 𝒫 𝐴
▶ 𝑥 ⊆ 𝐴 )
| | 4:3,1: | ⊢ ( ( 𝐴 ⊆ 𝐵 , 𝑥 ∈ 𝒫 𝐴 ) ▶ 𝑥 ⊆ 𝐵 )
| | 5:: | ⊢ 𝑥 ∈ V
| | 6:4,5: | ⊢ ( ( 𝐴 ⊆ 𝐵 , 𝑥 ∈ 𝒫 𝐴 ) ▶ 𝑥 ∈ 𝒫 𝐵
)
| | 7:6: | ⊢ ( 𝐴 ⊆ 𝐵 ▶ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵)
)
| | 8:7: | ⊢ ( 𝐴 ⊆ 𝐵 ▶ ∀𝑥(𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈
𝒫 𝐵) )
| | 9:8: | ⊢ ( 𝐴 ⊆ 𝐵 ▶ 𝒫 𝐴 ⊆ 𝒫 𝐵 )
| | qed:9: | ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
|
|
| ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| |
| Theorem | suctrALTcf 44953 |
The successor of a transitive class is transitive. suctrALTcf 44953, using
conventional notation, was translated from virtual deduction form,
suctrALTcfVD 44954, using a translation program. (Contributed
by Alan
Sare, 13-Jun-2015.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ (Tr 𝐴 → Tr suc 𝐴) |
| |
| Theorem | suctrALTcfVD 44954 |
The following User's Proof is a Virtual Deduction proof (see wvd1 44601)
using conjunction-form virtual hypothesis collections. The
conjunction-form version of completeusersproof.cmd. It allows the User
to avoid superflous virtual hypotheses. This proof was completed
automatically by a tools program which invokes Mel L. O'Cat's
mmj2 and Norm Megill's Metamath Proof Assistant. suctrALTcf 44953
is suctrALTcfVD 44954 without virtual deductions and was derived
automatically from suctrALTcfVD 44954. The version of
completeusersproof.cmd used is capable of only generating
conjunction-form unification theorems, not unification deductions.
(Contributed by Alan Sare, 13-Jun-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ ( Tr 𝐴 ▶ Tr 𝐴 )
| | 2:: | ⊢ ( ......... (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
suc 𝐴) ▶ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) )
| | 3:2: | ⊢ ( ......... (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
suc 𝐴) ▶ 𝑧 ∈ 𝑦 )
| | 4:: | ⊢ ( ...................................
....... 𝑦 ∈ 𝐴 ▶ 𝑦 ∈ 𝐴 )
| | 5:1,3,4: | ⊢ ( ( Tr 𝐴 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴)
, 𝑦 ∈ 𝐴 ) ▶ 𝑧 ∈ 𝐴 )
| | 6:: | ⊢ 𝐴 ⊆ suc 𝐴
| | 7:5,6: | ⊢ ( ( Tr 𝐴 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴)
, 𝑦 ∈ 𝐴 ) ▶ 𝑧 ∈ suc 𝐴 )
| | 8:7: | ⊢ ( ( Tr 𝐴 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴)
) ▶ (𝑦 ∈ 𝐴 → 𝑧 ∈ suc 𝐴) )
| | 9:: | ⊢ ( ...................................
...... 𝑦 = 𝐴 ▶ 𝑦 = 𝐴 )
| | 10:3,9: | ⊢ ( ........ ( (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
suc 𝐴), 𝑦 = 𝐴 ) ▶ 𝑧 ∈ 𝐴 )
| | 11:10,6: | ⊢ ( ........ ( (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
suc 𝐴), 𝑦 = 𝐴 ) ▶ 𝑧 ∈ suc 𝐴 )
| | 12:11: | ⊢ ( .......... (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
suc 𝐴) ▶ (𝑦 = 𝐴 → 𝑧 ∈ suc 𝐴) )
| | 13:2: | ⊢ ( .......... (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
suc 𝐴) ▶ 𝑦 ∈ suc 𝐴 )
| | 14:13: | ⊢ ( .......... (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
suc 𝐴) ▶ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴) )
| | 15:8,12,14: | ⊢ ( ( Tr 𝐴 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴)
) ▶ 𝑧 ∈ suc 𝐴 )
| | 16:15: | ⊢ ( Tr 𝐴 ▶ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈
suc 𝐴) → 𝑧 ∈ suc 𝐴) )
| | 17:16: | ⊢ ( Tr 𝐴 ▶ ∀𝑧∀𝑦((𝑧 ∈
𝑦 ∧ 𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴) )
| | 18:17: | ⊢ ( Tr 𝐴 ▶ Tr suc 𝐴 )
| | qed:18: | ⊢ (Tr 𝐴 → Tr suc 𝐴)
|
|
| ⊢ (Tr 𝐴 → Tr suc 𝐴) |
| |
| 21.41.10 Theorems with a VD proof in
conventional notation derived from a VD proof
|
| |
| Theorem | suctrALT3 44955 |
The successor of a transitive class is transitive. suctrALT3 44955 is the
completed proof in conventional notation of the Virtual Deduction proof
https://us.metamath.org/other/completeusersproof/suctralt3vd.html 44955.
It was completed manually. The potential for automated derivation from
the VD proof exists. See wvd1 44601 for a description of Virtual
Deduction.
Some sub-theorems of the proof were completed using a unification
deduction (e.g., the sub-theorem whose assertion is step 19 used
jaoded 44598). Unification deductions employ Mario
Carneiro's metavariable
concept. Some sub-theorems were completed using a unification theorem
(e.g., the sub-theorem whose assertion is step 24 used dftr2 5200) .
(Contributed by Alan Sare, 3-Dec-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (Tr 𝐴 → Tr suc 𝐴) |
| |
| Theorem | sspwimpALT 44956 |
If a class is a subclass of another class, then its power class is a
subclass of that other class's power class. Left-to-right implication
of Exercise 18 of [TakeutiZaring]
p. 18. sspwimpALT 44956 is the completed
proof in conventional notation of the Virtual Deduction proof
https://us.metamath.org/other/completeusersproof/sspwimpaltvd.html 44956.
It was completed manually. The potential for automated derivation from
the VD proof exists. See wvd1 44601 for a description of Virtual
Deduction.
Some sub-theorems of the proof were completed using a unification
deduction (e.g., the sub-theorem whose assertion is step 9 used
elpwgded 44596). Unification deductions employ Mario
Carneiro's
metavariable concept. Some sub-theorems were completed using a
unification theorem (e.g., the sub-theorem whose assertion is step 5
used elpwi 4557). (Contributed by Alan Sare, 3-Dec-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| |
| Theorem | unisnALT 44957 |
A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53.
The User manually input on a mmj2 Proof Worksheet, without labels, all
steps of unisnALT 44957 except 1, 11, 15, 21, and 30. With
execution of the
mmj2 unification command, mmj2 could find labels for all steps except
for 2, 12, 16, 22, and 31 (and the then non-existing steps 1, 11, 15,
21, and 30). mmj2 could not find reference theorems for those five steps
because the hypothesis field of each of these steps was empty and none
of those steps unifies with a theorem in set.mm. Each of these five
steps is a semantic variation of a theorem in set.mm and is 2-step
provable. mmj2 does not have the ability to automatically generate the
semantic variation in set.mm of a theorem in a mmj2 Proof Worksheet
unless the theorem in the Proof Worksheet is labeled with a 1-hypothesis
deduction whose hypothesis is a theorem in set.mm which unifies with the
theorem in the Proof Worksheet. The stepprover.c program, which invokes
mmj2, has this capability. stepprover.c automatically generated steps 1,
11, 15, 21, and 30, labeled all steps, and generated the RPN proof of
unisnALT 44957. Roughly speaking, stepprover.c added to
the Proof
Worksheet a labeled duplicate step of each non-unifying theorem for each
label in a text file, labels.txt, containing a list of labels provided
by the User. Upon mmj2 unification, stepprover.c identified a label for
each of the five theorems which 2-step proves it. For unisnALT 44957, the
label list is a list of all 1-hypothesis propositional calculus
deductions in set.mm. stepproverp.c is the same as stepprover.c except
that it intermittently pauses during execution, allowing the User to
observe the changes to a text file caused by the execution of particular
statements of the program. (Contributed by Alan Sare, 19-Aug-2016.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ 𝐴 ∈
V ⇒ ⊢ ∪
{𝐴} = 𝐴 |
| |
| 21.41.11 Theorems with a proof in conventional
notation derived from a VD proof
Theorems with a proof in conventional notation automatically derived by
completeusersproof.c from a Virtual Deduction User's Proof.
|
| |
| Theorem | notnotrALT2 44958 |
Converse of double negation. Theorem *2.14 of [WhiteheadRussell] p. 102.
Proof derived by completeusersproof.c from User's Proof in
VirtualDeductionProofs.txt. (Contributed by Alan Sare, 11-Sep-2016.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (¬ ¬
𝜑 → 𝜑) |
| |
| Theorem | sspwimpALT2 44959 |
If a class is a subclass of another class, then its power class is a
subclass of that other class's power class. Left-to-right implication
of Exercise 18 of [TakeutiZaring]
p. 18. Proof derived by
completeusersproof.c from User's Proof in VirtualDeductionProofs.txt.
The User's Proof in html format is displayed in
https://us.metamath.org/other/completeusersproof/sspwimpaltvd.html.
(Contributed by Alan Sare, 11-Sep-2016.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| |
| Theorem | e2ebindALT 44960 |
Absorption of an existential quantifier of a double existential quantifier
of non-distinct variables. The proof is derived by completeusersproof.c
from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html
format is displayed in e2ebindVD 44943. (Contributed by Alan Sare,
11-Sep-2016.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥∃𝑦𝜑 ↔ ∃𝑦𝜑)) |
| |
| Theorem | ax6e2ndALT 44961* |
If at least two sets exist (dtru 5379), then the same is true expressed
in an alternate form similar to the form of ax6e 2383.
The proof is
derived by completeusersproof.c from User's Proof in
VirtualDeductionProofs.txt. The User's Proof in html format is
displayed in ax6e2ndVD 44939. (Contributed by Alan Sare, 11-Sep-2016.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (¬
∀𝑥 𝑥 = 𝑦 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
| |
| Theorem | ax6e2ndeqALT 44962* |
"At least two sets exist" expressed in the form of dtru 5379
is logically
equivalent to the same expressed in a form similar to ax6e 2383
if dtru 5379
is false implies 𝑢 = 𝑣. Proof derived by
completeusersproof.c from
User's Proof in VirtualDeductionProofs.txt. The User's Proof in html
format is displayed in ax6e2ndeqVD 44940. (Contributed by Alan Sare,
11-Sep-2016.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) ↔ ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
| |
| Theorem | 2sb5ndALT 44963* |
Equivalence for double substitution 2sb5 2280 without distinct 𝑥,
𝑦 requirement. 2sb5nd 44592 is derived from 2sb5ndVD 44941. The proof is
derived by completeusersproof.c from User's Proof in
VirtualDeductionProofs.txt. The User's Proof in html format is
displayed in 2sb5ndVD 44941. (Contributed by Alan Sare, 19-Sep-2016.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))) |
| |
| Theorem | chordthmALT 44964* |
The intersecting chords theorem. If points A, B, C, and D lie on a
circle (with center Q, say), and the point P is on the interior of the
segments AB and CD, then the two products of lengths PA · PB and
PC · PD are equal. The Euclidean plane is identified with the
complex plane, and the fact that P is on AB and on CD is expressed by
the hypothesis that the angles APB and CPD are equal to π. The
result is proven by using chordthmlem5 26771 twice to show that PA
· PB and PC · PD both equal BQ
2
−
PQ
2
. This is similar to the proof of the
theorem given in Euclid's Elements, where it is Proposition
III.35.
Proven by David Moews on 28-Feb-2017 as chordthm 26772.
https://us.metamath.org/other/completeusersproof/chordthmaltvd.html 26772 is
a Virtual
Deduction User's Proof transcription of chordthm 26772. That VD User's
Proof was input into completeusersproof, automatically generating this
chordthmALT 44964 Metamath proof. (Contributed by Alan Sare,
19-Sep-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0})
↦ (ℑ‘(log‘(𝑦 / 𝑥)))) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑃 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝑃)
& ⊢ (𝜑 → 𝐵 ≠ 𝑃)
& ⊢ (𝜑 → 𝐶 ≠ 𝑃)
& ⊢ (𝜑 → 𝐷 ≠ 𝑃)
& ⊢ (𝜑 → ((𝐴 − 𝑃)𝐹(𝐵 − 𝑃)) = π) & ⊢ (𝜑 → ((𝐶 − 𝑃)𝐹(𝐷 − 𝑃)) = π) & ⊢ (𝜑 → 𝑄 ∈ ℂ) & ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) & ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐶 − 𝑄))) & ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐷 − 𝑄))) ⇒ ⊢ (𝜑 → ((abs‘(𝑃 − 𝐴)) · (abs‘(𝑃 − 𝐵))) = ((abs‘(𝑃 − 𝐶)) · (abs‘(𝑃 − 𝐷)))) |
| |
| Theorem | isosctrlem1ALT 44965 |
Lemma for isosctr 26756. This proof was automatically derived by
completeusersproof from its Virtual Deduction proof counterpart
https://us.metamath.org/other/completeusersproof/isosctrlem1altvd.html 26756.
As it is verified by the Metamath program, isosctrlem1ALT 44965 verifies
https://us.metamath.org/other/completeusersproof/isosctrlem1altvd.html 44965.
(Contributed by Alan Sare, 22-Apr-2018.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) = 1 ∧
¬ 1 = 𝐴) →
(ℑ‘(log‘(1 − 𝐴))) ≠ π) |
| |
| Theorem | iunconnlem2 44966* |
The indexed union of connected overlapping subspaces sharing a common
point is connected. This proof was automatically derived by
completeusersproof from its Virtual Deduction proof counterpart
https://us.metamath.org/other/completeusersproof/iunconlem2vd.html.
As it is verified by the Metamath program, iunconnlem2 44966 verifies
https://us.metamath.org/other/completeusersproof/iunconlem2vd.html 44966.
(Contributed by Alan Sare, 22-Apr-2018.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (𝜓 ↔ ((((((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑣 ∈ 𝐽) ∧ (𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅) ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅) ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪ 𝑘 ∈ 𝐴 𝐵)) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣))) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ 𝑋)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐽 ↾t 𝐵) ∈ Conn)
⇒ ⊢ (𝜑 → (𝐽 ↾t ∪ 𝑘 ∈ 𝐴 𝐵) ∈ Conn) |
| |
| Theorem | iunconnALT 44967* |
The indexed union of connected overlapping subspaces sharing a common
point is connected. This proof was automatically derived by
completeusersproof from its Virtual Deduction proof counterpart
https://us.metamath.org/other/completeusersproof/iunconaltvd.html.
As it is verified by the Metamath program, iunconnALT 44967 verifies
https://us.metamath.org/other/completeusersproof/iunconaltvd.html 44967.
(Contributed by Alan Sare, 22-Apr-2018.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ 𝑋)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐽 ↾t 𝐵) ∈ Conn)
⇒ ⊢ (𝜑 → (𝐽 ↾t ∪ 𝑘 ∈ 𝐴 𝐵) ∈ Conn) |
| |
| Theorem | sineq0ALT 44968 |
A complex number whose sine is zero is an integer multiple of π.
The Virtual Deduction form of the proof is
https://us.metamath.org/other/completeusersproof/sineq0altvd.html.
The
Metamath form of the proof is sineq0ALT 44968. The Virtual Deduction proof
is based on Mario Carneiro's revision of Norm Megill's proof of sineq0 26458.
The Virtual Deduction proof is verified by automatically transforming it
into the Metamath form of the proof using completeusersproof, which is
verified by the Metamath program. The proof of
https://us.metamath.org/other/completeusersproof/sineq0altro.html 26458 is a
form of the completed proof which preserves the Virtual Deduction proof's
step numbers and their ordering. (Contributed by Alan Sare, 13-Jun-2018.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ ℂ →
((sin‘𝐴) = 0 ↔
(𝐴 / π) ∈
ℤ)) |
| |
| 21.42 Mathbox for Eric
Schmidt
|
| |
| 21.42.1 Miscellany
|
| |
| Theorem | rspesbcd 44969* |
Restricted quantifier version of spesbcd 3834. (Contributed by Eric
Schmidt, 29-Sep-2025.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝐵)
& ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
| |
| Theorem | rext0 44970* |
Nonempty existential quantification of a theorem is true. (Contributed
by Eric Schmidt, 19-Oct-2025.)
|
| ⊢ 𝜑 ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ 𝐴 ≠ ∅) |
| |
| 21.42.2 Study of dfbi1ALT
|
| |
| Theorem | dfbi1ALTa 44971 |
Version of dfbi1ALT 214 using ⊤ for
step 2 and shortened using a1i 11,
a2i 14, and con4i 114. (Contributed by Eric Schmidt,
22-Oct-2025.)
(New usage is discouraged.) (Proof modification is discouraged.)
|
| ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) |
| |
| Theorem | simprimi 44972 |
Inference associated with simprim 166. Proved exactly as step 11 is
obtained from step 4 in dfbi1ALTa 44971. (Contributed by Eric Schmidt,
22-Oct-2025.) (New usage is discouraged.)
(Proof modification is discouraged.)
|
| ⊢ ¬ (𝜑 → ¬ 𝜓) ⇒ ⊢ 𝜓 |
| |
| Theorem | dfbi1ALTb 44973 |
Further shorten dfbi1ALTa 44971 using simprimi 44972. (Contributed by Eric
Schmidt, 22-Oct-2025.) (New usage is discouraged.)
(Proof modification is discouraged.)
|
| ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) |
| |
| 21.42.3 Relation-preserving
functions
|
| |
| Syntax | wrelp 44974 |
Extend the definition of a wff to include the relation-preserving
property. (Contributed by Eric Schmidt, 11-Oct-2025.)
|
| wff 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) |
| |
| Definition | df-relp 44975* |
Define the relation-preserving predicate. This is a viable notion of
"homomorphism" corresponding to df-isom 6490. (Contributed by Eric
Schmidt, 11-Oct-2025.)
|
| ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ (𝐻:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
| |
| Theorem | relpeq1 44976 |
Equality theorem for relation-preserving functions. (Contributed by
Eric Schmidt, 11-Oct-2025.)
|
| ⊢ (𝐻 = 𝐺 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐺 RelPres 𝑅, 𝑆(𝐴, 𝐵))) |
| |
| Theorem | relpeq2 44977 |
Equality theorem for relation-preserving functions. (Contributed by
Eric Schmidt, 11-Oct-2025.)
|
| ⊢ (𝑅 = 𝑇 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑇, 𝑆(𝐴, 𝐵))) |
| |
| Theorem | relpeq3 44978 |
Equality theorem for relation-preserving functions. (Contributed by
Eric Schmidt, 11-Oct-2025.)
|
| ⊢ (𝑆 = 𝑇 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑅, 𝑇(𝐴, 𝐵))) |
| |
| Theorem | relpeq4 44979 |
Equality theorem for relation-preserving functions. (Contributed by
Eric Schmidt, 11-Oct-2025.)
|
| ⊢ (𝐴 = 𝐶 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑅, 𝑆(𝐶, 𝐵))) |
| |
| Theorem | relpeq5 44980 |
Equality theorem for relation-preserving functions. (Contributed by
Eric Schmidt, 11-Oct-2025.)
|
| ⊢ (𝐵 = 𝐶 → (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐶))) |
| |
| Theorem | nfrelp 44981 |
Bound-variable hypothesis builder for a relation-preserving function.
(Contributed by Eric Schmidt, 11-Oct-2025.)
|
| ⊢
Ⅎ𝑥𝐻
& ⊢ Ⅎ𝑥𝑅
& ⊢ Ⅎ𝑥𝑆
& ⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) |
| |
| Theorem | relpf 44982 |
A relation-preserving function is a function. (Contributed by Eric
Schmidt, 11-Oct-2025.)
|
| ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → 𝐻:𝐴⟶𝐵) |
| |
| Theorem | relprel 44983 |
A relation-preserving function preserves the relation. (Contributed by
Eric Schmidt, 11-Oct-2025.)
|
| ⊢ ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶𝑅𝐷 → (𝐻‘𝐶)𝑆(𝐻‘𝐷))) |
| |
| Theorem | relpmin 44984 |
A preimage of a minimal element under a relation-preserving function is
minimal. Essentially one half of isomin 7271. (Contributed by Eric
Schmidt, 11-Oct-2025.)
|
| ⊢ ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) = ∅ → (𝐶 ∩ (◡𝑅 “ {𝐷})) = ∅)) |
| |
| Theorem | relpfrlem 44985* |
Lemma for relpfr 44986. Proved without using the Axiom of
Replacement.
This is isofrlem 7274 with weaker hypotheses. (Contributed by Eric
Schmidt, 11-Oct-2025.)
|
| ⊢ (𝜑 → 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵)) & ⊢ (𝜑 → (𝐻 “ 𝑥) ∈ V) ⇒ ⊢ (𝜑 → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) |
| |
| Theorem | relpfr 44986 |
If the image of a set under a relation-preserving function is
well-founded, so is the set. See isofr 7276 for a bidirectional statement.
A more general version of Lemma I.9.9 of [Kunen2] p. 47. (Contributed
by Eric Schmidt, 11-Oct-2025.)
|
| ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) |
| |
| 21.42.4 Orbits
|
| |
| Theorem | orbitex 44987 |
Orbits exist. Given a set 𝐴 and a function 𝐹, the
orbit of 𝐴
under 𝐹 is the smallest set 𝑍 such
that 𝐴
∈ 𝑍 and 𝑍 is
closed under 𝐹. (Contributed by Eric Schmidt,
6-Nov-2025.)
|
| ⊢ (rec(𝐹, 𝐴) “ ω) ∈
V |
| |
| Theorem | orbitinit 44988 |
A set is contained in its orbit. (Contributed by Eric Schmidt,
6-Nov-2025.)
|
| ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ (rec(𝐹, 𝐴) “ ω)) |
| |
| Theorem | orbitcl 44989 |
The orbit under a function is closed under the function. (Contributed
by Eric Schmidt, 6-Nov-2025.)
|
| ⊢ (𝐵 ∈ (rec(𝐹, 𝐴) “ ω) → (𝐹‘𝐵) ∈ (rec(𝐹, 𝐴) “ ω)) |
| |
| Theorem | orbitclmpt 44990 |
Version of orbitcl 44989 using maps-to notation. (Contributed by
Eric
Schmidt, 6-Nov-2025.)
|
| ⊢
Ⅎ𝑥𝐵
& ⊢ Ⅎ𝑥𝐷
& ⊢ 𝑍 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) “ ω) & ⊢ (𝑥 = 𝐵 → 𝐶 = 𝐷) ⇒ ⊢ ((𝐵 ∈ 𝑍 ∧ 𝐷 ∈ 𝑉) → 𝐷 ∈ 𝑍) |
| |
| 21.42.5 Well-founded sets
|
| |
| Theorem | trwf 44991 |
The class of well-founded sets is transitive. (Contributed by Eric
Schmidt, 9-Sep-2025.)
|
| ⊢ Tr ∪ (𝑅1 “ On) |
| |
| Theorem | rankrelp 44992 |
The rank function preserves ∈. (Contributed by
Eric Schmidt,
11-Oct-2025.)
|
| ⊢ rank RelPres E
, E (∪ (𝑅1 “ On),
On) |
| |
| Theorem | wffr 44993 |
The class of well-founded sets is well-founded. Lemma I.9.24(2) of
[Kunen2] p. 53. (Contributed by Eric
Schmidt, 11-Oct-2025.)
|
| ⊢ E Fr ∪ (𝑅1 “ On) |
| |
| Theorem | trfr 44994 |
A transitive class well-founded by ∈ is a subclass
of the class of
well-founded sets. Part of Lemma I.9.21 of [Kunen2] p. 53.
(Contributed by Eric Schmidt, 26-Oct-2025.)
|
| ⊢ ((Tr 𝐴 ∧ E Fr 𝐴) → 𝐴 ⊆ ∪
(𝑅1 “ On)) |
| |
| Theorem | tcfr 44995 |
A set is well-founded if and only if its transitive closure is
well-founded by ∈. This characterization
of well-founded sets is
that in Definition I.9.20 of [Kunen2] p.
53. (Contributed by Eric
Schmidt, 26-Oct-2025.)
|
| ⊢ 𝐴 ∈
V ⇒ ⊢ (𝐴 ∈ ∪
(𝑅1 “ On) ↔ E Fr (TC‘𝐴)) |
| |
| Theorem | xpwf 44996 |
The Cartesian product of two well-founded sets is well-founded.
(Contributed by Eric Schmidt, 12-Sep-2025.)
|
| ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → (𝐴 × 𝐵) ∈ ∪
(𝑅1 “ On)) |
| |
| Theorem | dmwf 44997 |
The domain of a well-founded set is well-founded. (Contributed by Eric
Schmidt, 12-Sep-2025.)
|
| ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → dom 𝐴 ∈ ∪ (𝑅1 “ On)) |
| |
| Theorem | rnwf 44998 |
The range of a well-founded set is well-founded. (Contributed by Eric
Schmidt, 12-Sep-2025.)
|
| ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ran 𝐴 ∈ ∪ (𝑅1 “ On)) |
| |
| Theorem | relwf 44999 |
A relation is a well-founded set iff its domain and range are.
(Contributed by Eric Schmidt, 29-Sep-2025.)
|
| ⊢ (Rel 𝑅 → (𝑅 ∈ ∪
(𝑅1 “ On) ↔ (dom 𝑅 ∈ ∪
(𝑅1 “ On) ∧ ran 𝑅 ∈ ∪
(𝑅1 “ On)))) |
| |
| 21.42.6 Absoluteness in transitive
models
|
| |
| Theorem | ralabso 45000* |
Simplification of restricted quantification in a transitive class. When
𝜑 is quantifier-free, this shows that
the formula ∀𝑥 ∈ 𝑦𝜑
is absolute for transitive models, which is a particular case of Lemma
I.16.2 of [Kunen2] p. 95. (Contributed
by Eric Schmidt,
19-Oct-2025.)
|
| ⊢ ((Tr 𝑀 ∧ 𝐴 ∈ 𝑀) → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 → 𝜑))) |