Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvreltrrel Structured version   Visualization version   GIF version

Theorem eqvreltrrel 36619
Description: An equivalence relation is transitive. (Contributed by Peter Mazsa, 29-Dec-2021.)
Assertion
Ref Expression
eqvreltrrel ( EqvRel 𝑅 → TrRel 𝑅)

Proof of Theorem eqvreltrrel
StepHypRef Expression
1 df-eqvrel 36604 . 2 ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅))
21simp3bi 1149 1 ( EqvRel 𝑅 → TrRel 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   RefRel wrefrel 36245   SymRel wsymrel 36251   TrRel wtrrel 36254   EqvRel weqvrel 36256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1091  df-eqvrel 36604
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator