| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvreltrrel | Structured version Visualization version GIF version | ||
| Description: An equivalence relation is transitive. (Contributed by Peter Mazsa, 29-Dec-2021.) |
| Ref | Expression |
|---|---|
| eqvreltrrel | ⊢ ( EqvRel 𝑅 → TrRel 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eqvrel 38527 | . 2 ⊢ ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅)) | |
| 2 | 1 | simp3bi 1147 | 1 ⊢ ( EqvRel 𝑅 → TrRel 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 RefRel wrefrel 38129 SymRel wsymrel 38135 TrRel wtrrel 38138 EqvRel weqvrel 38140 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-eqvrel 38527 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |