|   | Mathbox for Peter Mazsa | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-eqvrel | Structured version Visualization version GIF version | ||
| Description: Define the equivalence relation predicate. (Read: 𝑅 is an equivalence relation.) For sets, being an element of the class of equivalence relations (df-eqvrels 38585) is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel 38595. Alternate definitions are dfeqvrel2 38591 and dfeqvrel3 38592. (Contributed by Peter Mazsa, 17-Apr-2019.) | 
| Ref | Expression | 
|---|---|
| df-eqvrel | ⊢ ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cR | . . 3 class 𝑅 | |
| 2 | 1 | weqvrel 38199 | . 2 wff EqvRel 𝑅 | 
| 3 | 1 | wrefrel 38188 | . . 3 wff RefRel 𝑅 | 
| 4 | 1 | wsymrel 38194 | . . 3 wff SymRel 𝑅 | 
| 5 | 1 | wtrrel 38197 | . . 3 wff TrRel 𝑅 | 
| 6 | 3, 4, 5 | w3a 1087 | . 2 wff ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅) | 
| 7 | 2, 6 | wb 206 | 1 wff ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅)) | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: dfeqvrel2 38591 dfeqvrel3 38592 eqvrelrefrel 38599 eqvrelsymrel 38600 eqvreltrrel 38601 eqvreleq 38603 eqvrelcoss 38618 refrelredund2 38637 | 
| Copyright terms: Public domain | W3C validator |