Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-eqvrel | Structured version Visualization version GIF version |
Description: Define the equivalence relation predicate. (Read: 𝑅 is an equivalence relation.) For sets, being an element of the class of equivalence relations (df-eqvrels 36798) is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel 36808. Alternate definitions are dfeqvrel2 36804 and dfeqvrel3 36805. (Contributed by Peter Mazsa, 17-Apr-2019.) |
Ref | Expression |
---|---|
df-eqvrel | ⊢ ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cR | . . 3 class 𝑅 | |
2 | 1 | weqvrel 36398 | . 2 wff EqvRel 𝑅 |
3 | 1 | wrefrel 36387 | . . 3 wff RefRel 𝑅 |
4 | 1 | wsymrel 36393 | . . 3 wff SymRel 𝑅 |
5 | 1 | wtrrel 36396 | . . 3 wff TrRel 𝑅 |
6 | 3, 4, 5 | w3a 1087 | . 2 wff ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅) |
7 | 2, 6 | wb 205 | 1 wff ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅)) |
Colors of variables: wff setvar class |
This definition is referenced by: dfeqvrel2 36804 dfeqvrel3 36805 eqvrelrefrel 36812 eqvrelsymrel 36813 eqvreltrrel 36814 eqvreleq 36816 eqvrelcoss 36831 refrelredund2 36850 |
Copyright terms: Public domain | W3C validator |