| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-eqvrel | Structured version Visualization version GIF version | ||
| Description: Define the equivalence relation predicate. (Read: 𝑅 is an equivalence relation.) For sets, being an element of the class of equivalence relations (df-eqvrels 38602) is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel 38612. Alternate definitions are dfeqvrel2 38608 and dfeqvrel3 38609. (Contributed by Peter Mazsa, 17-Apr-2019.) |
| Ref | Expression |
|---|---|
| df-eqvrel | ⊢ ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cR | . . 3 class 𝑅 | |
| 2 | 1 | weqvrel 38216 | . 2 wff EqvRel 𝑅 |
| 3 | 1 | wrefrel 38205 | . . 3 wff RefRel 𝑅 |
| 4 | 1 | wsymrel 38211 | . . 3 wff SymRel 𝑅 |
| 5 | 1 | wtrrel 38214 | . . 3 wff TrRel 𝑅 |
| 6 | 3, 4, 5 | w3a 1086 | . 2 wff ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅) |
| 7 | 2, 6 | wb 206 | 1 wff ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfeqvrel2 38608 dfeqvrel3 38609 eqvrelrefrel 38616 eqvrelsymrel 38617 eqvreltrrel 38618 eqvreleq 38620 eqvrelcoss 38635 refrelredund2 38654 |
| Copyright terms: Public domain | W3C validator |