| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvrelsymrel | Structured version Visualization version GIF version | ||
| Description: An equivalence relation is symmetric. (Contributed by Peter Mazsa, 29-Dec-2021.) |
| Ref | Expression |
|---|---|
| eqvrelsymrel | ⊢ ( EqvRel 𝑅 → SymRel 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eqvrel 38587 | . 2 ⊢ ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅)) | |
| 2 | 1 | simp2bi 1146 | 1 ⊢ ( EqvRel 𝑅 → SymRel 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 RefRel wrefrel 38189 SymRel wsymrel 38195 TrRel wtrrel 38198 EqvRel weqvrel 38200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-eqvrel 38587 |
| This theorem is referenced by: eqvrelim 38603 eqvrelsym 38607 |
| Copyright terms: Public domain | W3C validator |