Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > falantru | Structured version Visualization version GIF version |
Description: A ∧ identity. (Contributed by Anthony Hart, 22-Oct-2010.) |
Ref | Expression |
---|---|
falantru | ⊢ ((⊥ ∧ ⊤) ↔ ⊥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fal 1557 | . . 3 ⊢ ¬ ⊥ | |
2 | 1 | intnanr 491 | . 2 ⊢ ¬ (⊥ ∧ ⊤) |
3 | 2 | bifal 1559 | 1 ⊢ ((⊥ ∧ ⊤) ↔ ⊥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ⊤wtru 1544 ⊥wfal 1555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-fal 1556 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |