MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falantru Structured version   Visualization version   GIF version

Theorem falantru 1637
Description: A identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
falantru ((⊥ ∧ ⊤) ↔ ⊥)

Proof of Theorem falantru
StepHypRef Expression
1 fal 1616 . . 3 ¬ ⊥
21intnanr 483 . 2 ¬ (⊥ ∧ ⊤)
32bifal 1618 1 ((⊥ ∧ ⊤) ↔ ⊥)
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 386  wtru 1602  wfal 1614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 387  df-tru 1605  df-fal 1615
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator