|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > falantru | Structured version Visualization version GIF version | ||
| Description: A ∧ identity. (Contributed by Anthony Hart, 22-Oct-2010.) | 
| Ref | Expression | 
|---|---|
| falantru | ⊢ ((⊥ ∧ ⊤) ↔ ⊥) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fal 1554 | . . 3 ⊢ ¬ ⊥ | |
| 2 | 1 | intnanr 487 | . 2 ⊢ ¬ (⊥ ∧ ⊤) | 
| 3 | 2 | bifal 1556 | 1 ⊢ ((⊥ ∧ ⊤) ↔ ⊥) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 ⊤wtru 1541 ⊥wfal 1552 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |