Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > intnanr | Structured version Visualization version GIF version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 3-Apr-1995.) |
Ref | Expression |
---|---|
intnan.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
intnanr | ⊢ ¬ (𝜑 ∧ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnan.1 | . 2 ⊢ ¬ 𝜑 | |
2 | simpl 483 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
3 | 1, 2 | mto 196 | 1 ⊢ ¬ (𝜑 ∧ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: falantru 1577 rab0 4322 0nelopab 5480 0nelxp 5623 co02 6162 xrltnr 12852 pnfnlt 12861 nltmnf 12862 0nelfz1 13272 smu02 16190 0g0 18344 axlowdimlem13 27318 axlowdimlem16 27321 axlowdim 27325 signstfvneq0 32545 gonanegoal 33308 gonan0 33348 goaln0 33349 fmla0disjsuc 33354 bcneg1 33696 nolt02o 33892 nogt01o 33893 linedegen 34439 epnsymrel 36670 padd02 37820 eldioph4b 40628 iblempty 43475 notatnand 44357 iota0ndef 44499 aiota0ndef 44555 fun2dmnopgexmpl 44742 |
Copyright terms: Public domain | W3C validator |