![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intnanr | Structured version Visualization version GIF version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 3-Apr-1995.) |
Ref | Expression |
---|---|
intnan.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
intnanr | ⊢ ¬ (𝜑 ∧ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnan.1 | . 2 ⊢ ¬ 𝜑 | |
2 | simpl 482 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
3 | 1, 2 | mto 197 | 1 ⊢ ¬ (𝜑 ∧ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: falantru 1572 rab0 4409 0nelopab 5586 0nelxp 5734 co02 6291 xrltnr 13182 pnfnlt 13191 nltmnf 13192 0nelfz1 13603 smu02 16533 0g0 18702 nolt02o 27758 nogt01o 27759 axlowdimlem13 28987 axlowdimlem16 28990 axlowdim 28994 signstfvneq0 34549 gonanegoal 35320 gonan0 35360 goaln0 35361 fmla0disjsuc 35366 bcneg1 35698 linedegen 36107 epnsymrel 38518 padd02 39769 eldioph4b 42767 iblempty 45886 notatnand 46811 iota0ndef 46954 aiota0ndef 47012 fun2dmnopgexmpl 47199 |
Copyright terms: Public domain | W3C validator |