![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intnanr | Structured version Visualization version GIF version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 3-Apr-1995.) |
Ref | Expression |
---|---|
intnan.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
intnanr | ⊢ ¬ (𝜑 ∧ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnan.1 | . 2 ⊢ ¬ 𝜑 | |
2 | simpl 482 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
3 | 1, 2 | mto 197 | 1 ⊢ ¬ (𝜑 ∧ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: falantru 1571 rab0 4391 0nelopab 5576 0nelxp 5722 co02 6281 xrltnr 13158 pnfnlt 13167 nltmnf 13168 0nelfz1 13579 smu02 16520 0g0 18689 nolt02o 27754 nogt01o 27755 axlowdimlem13 28983 axlowdimlem16 28986 axlowdim 28990 signstfvneq0 34565 gonanegoal 35336 gonan0 35376 goaln0 35377 fmla0disjsuc 35382 bcneg1 35715 linedegen 36124 epnsymrel 38543 padd02 39794 eldioph4b 42798 iblempty 45920 notatnand 46845 iota0ndef 46988 aiota0ndef 47046 fun2dmnopgexmpl 47233 |
Copyright terms: Public domain | W3C validator |