MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intnanr Structured version   Visualization version   GIF version

Theorem intnanr 488
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 3-Apr-1995.)
Hypothesis
Ref Expression
intnan.1 ¬ 𝜑
Assertion
Ref Expression
intnanr ¬ (𝜑𝜓)

Proof of Theorem intnanr
StepHypRef Expression
1 intnan.1 . 2 ¬ 𝜑
2 simpl 483 . 2 ((𝜑𝜓) → 𝜑)
31, 2mto 196 1 ¬ (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  falantru  1576  rab0  4382  0nelopab  5567  0nelxp  5710  co02  6259  xrltnr  13103  pnfnlt  13112  nltmnf  13113  0nelfz1  13524  smu02  16432  0g0  18589  nolt02o  27422  nogt01o  27423  axlowdimlem13  28467  axlowdimlem16  28470  axlowdim  28474  signstfvneq0  33869  gonanegoal  34629  gonan0  34669  goaln0  34670  fmla0disjsuc  34675  bcneg1  34998  linedegen  35407  epnsymrel  37735  padd02  38986  eldioph4b  41851  iblempty  44980  notatnand  45905  iota0ndef  46048  aiota0ndef  46104  fun2dmnopgexmpl  46291
  Copyright terms: Public domain W3C validator