| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intnanr | Structured version Visualization version GIF version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 3-Apr-1995.) |
| Ref | Expression |
|---|---|
| intnan.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| intnanr | ⊢ ¬ (𝜑 ∧ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnan.1 | . 2 ⊢ ¬ 𝜑 | |
| 2 | simpl 482 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 3 | 1, 2 | mto 197 | 1 ⊢ ¬ (𝜑 ∧ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: falantru 1575 rab0 4349 0nelopab 5527 0nelxp 5672 co02 6233 xrltnr 13079 pnfnlt 13088 nltmnf 13089 0nelfz1 13504 smu02 16457 0g0 18591 nolt02o 27607 nogt01o 27608 axlowdimlem13 28881 axlowdimlem16 28884 axlowdim 28888 signstfvneq0 34563 gonanegoal 35339 gonan0 35379 goaln0 35380 fmla0disjsuc 35385 bcneg1 35723 linedegen 36131 epnsymrel 38553 padd02 39806 eldioph4b 42799 iblempty 45963 notatnand 46897 iota0ndef 47040 aiota0ndef 47098 fun2dmnopgexmpl 47285 |
| Copyright terms: Public domain | W3C validator |