Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > intnanr | Structured version Visualization version GIF version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 3-Apr-1995.) |
Ref | Expression |
---|---|
intnan.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
intnanr | ⊢ ¬ (𝜑 ∧ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnan.1 | . 2 ⊢ ¬ 𝜑 | |
2 | simpl 483 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
3 | 1, 2 | mto 196 | 1 ⊢ ¬ (𝜑 ∧ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: falantru 1574 rab0 4316 0nelopab 5480 0nelxp 5623 co02 6164 xrltnr 12855 pnfnlt 12864 nltmnf 12865 0nelfz1 13275 smu02 16194 0g0 18348 axlowdimlem13 27322 axlowdimlem16 27325 axlowdim 27329 signstfvneq0 32551 gonanegoal 33314 gonan0 33354 goaln0 33355 fmla0disjsuc 33360 bcneg1 33702 nolt02o 33898 nogt01o 33899 linedegen 34445 epnsymrel 36676 padd02 37826 eldioph4b 40633 iblempty 43506 notatnand 44391 iota0ndef 44533 aiota0ndef 44589 fun2dmnopgexmpl 44776 |
Copyright terms: Public domain | W3C validator |