| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intnanr | Structured version Visualization version GIF version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 3-Apr-1995.) |
| Ref | Expression |
|---|---|
| intnan.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| intnanr | ⊢ ¬ (𝜑 ∧ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnan.1 | . 2 ⊢ ¬ 𝜑 | |
| 2 | simpl 482 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 3 | 1, 2 | mto 197 | 1 ⊢ ¬ (𝜑 ∧ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: falantru 1576 rab0 4336 0nelopab 5505 0nelxp 5650 co02 6208 xrltnr 13015 pnfnlt 13024 nltmnf 13025 0nelfz1 13440 smu02 16395 0g0 18569 nolt02o 27632 nogt01o 27633 axlowdimlem13 28930 axlowdimlem16 28933 axlowdim 28937 signstfvneq0 34580 gonanegoal 35384 gonan0 35424 goaln0 35425 fmla0disjsuc 35430 bcneg1 35768 linedegen 36176 epnsymrel 38598 padd02 39850 eldioph4b 42843 iblempty 46002 notatnand 46926 iota0ndef 47069 aiota0ndef 47127 fun2dmnopgexmpl 47314 |
| Copyright terms: Public domain | W3C validator |