| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intnanr | Structured version Visualization version GIF version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 3-Apr-1995.) |
| Ref | Expression |
|---|---|
| intnan.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| intnanr | ⊢ ¬ (𝜑 ∧ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnan.1 | . 2 ⊢ ¬ 𝜑 | |
| 2 | simpl 482 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 3 | 1, 2 | mto 197 | 1 ⊢ ¬ (𝜑 ∧ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: falantru 1575 rab0 4361 0nelopab 5542 0nelxp 5688 co02 6249 xrltnr 13135 pnfnlt 13144 nltmnf 13145 0nelfz1 13560 smu02 16506 0g0 18642 nolt02o 27659 nogt01o 27660 axlowdimlem13 28933 axlowdimlem16 28936 axlowdim 28940 signstfvneq0 34604 gonanegoal 35374 gonan0 35414 goaln0 35415 fmla0disjsuc 35420 bcneg1 35753 linedegen 36161 epnsymrel 38580 padd02 39831 eldioph4b 42834 iblempty 45994 notatnand 46925 iota0ndef 47068 aiota0ndef 47126 fun2dmnopgexmpl 47313 |
| Copyright terms: Public domain | W3C validator |