MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intnanr Structured version   Visualization version   GIF version

Theorem intnanr 487
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 3-Apr-1995.)
Hypothesis
Ref Expression
intnan.1 ¬ 𝜑
Assertion
Ref Expression
intnanr ¬ (𝜑𝜓)

Proof of Theorem intnanr
StepHypRef Expression
1 intnan.1 . 2 ¬ 𝜑
2 simpl 482 . 2 ((𝜑𝜓) → 𝜑)
31, 2mto 197 1 ¬ (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  falantru  1572  rab0  4409  0nelopab  5586  0nelxp  5734  co02  6291  xrltnr  13182  pnfnlt  13191  nltmnf  13192  0nelfz1  13603  smu02  16533  0g0  18702  nolt02o  27758  nogt01o  27759  axlowdimlem13  28987  axlowdimlem16  28990  axlowdim  28994  signstfvneq0  34549  gonanegoal  35320  gonan0  35360  goaln0  35361  fmla0disjsuc  35366  bcneg1  35698  linedegen  36107  epnsymrel  38518  padd02  39769  eldioph4b  42767  iblempty  45886  notatnand  46811  iota0ndef  46954  aiota0ndef  47012  fun2dmnopgexmpl  47199
  Copyright terms: Public domain W3C validator