| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intnanr | Structured version Visualization version GIF version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 3-Apr-1995.) |
| Ref | Expression |
|---|---|
| intnan.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| intnanr | ⊢ ¬ (𝜑 ∧ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnan.1 | . 2 ⊢ ¬ 𝜑 | |
| 2 | simpl 482 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 3 | 1, 2 | mto 197 | 1 ⊢ ¬ (𝜑 ∧ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: falantru 1576 rab0 4335 0nelopab 5508 0nelxp 5653 co02 6213 xrltnr 13020 pnfnlt 13029 nltmnf 13030 0nelfz1 13445 smu02 16400 0g0 18574 nolt02o 27635 nogt01o 27636 axlowdimlem13 28934 axlowdimlem16 28937 axlowdim 28941 signstfvneq0 34606 gonanegoal 35417 gonan0 35457 goaln0 35458 fmla0disjsuc 35463 bcneg1 35801 linedegen 36208 epnsymrel 38678 padd02 39931 eldioph4b 42928 iblempty 46087 notatnand 47020 iota0ndef 47163 aiota0ndef 47221 fun2dmnopgexmpl 47408 |
| Copyright terms: Public domain | W3C validator |