| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intnanr | Structured version Visualization version GIF version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 3-Apr-1995.) |
| Ref | Expression |
|---|---|
| intnan.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| intnanr | ⊢ ¬ (𝜑 ∧ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnan.1 | . 2 ⊢ ¬ 𝜑 | |
| 2 | simpl 482 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 3 | 1, 2 | mto 197 | 1 ⊢ ¬ (𝜑 ∧ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: falantru 1575 rab0 4339 0nelopab 5512 0nelxp 5657 co02 6213 xrltnr 13039 pnfnlt 13048 nltmnf 13049 0nelfz1 13464 smu02 16416 0g0 18556 nolt02o 27623 nogt01o 27624 axlowdimlem13 28917 axlowdimlem16 28920 axlowdim 28924 signstfvneq0 34539 gonanegoal 35324 gonan0 35364 goaln0 35365 fmla0disjsuc 35370 bcneg1 35708 linedegen 36116 epnsymrel 38538 padd02 39791 eldioph4b 42784 iblempty 45947 notatnand 46881 iota0ndef 47024 aiota0ndef 47082 fun2dmnopgexmpl 47269 |
| Copyright terms: Public domain | W3C validator |