Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > intnanr | Structured version Visualization version GIF version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 3-Apr-1995.) |
Ref | Expression |
---|---|
intnan.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
intnanr | ⊢ ¬ (𝜑 ∧ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnan.1 | . 2 ⊢ ¬ 𝜑 | |
2 | simpl 482 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
3 | 1, 2 | mto 196 | 1 ⊢ ¬ (𝜑 ∧ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: falantru 1574 rab0 4313 0nelopab 5471 0nelxp 5614 co02 6153 xrltnr 12784 pnfnlt 12793 nltmnf 12794 0nelfz1 13204 smu02 16122 0g0 18263 axlowdimlem13 27225 axlowdimlem16 27228 axlowdim 27232 signstfvneq0 32451 gonanegoal 33214 gonan0 33254 goaln0 33255 fmla0disjsuc 33260 bcneg1 33608 nolt02o 33825 nogt01o 33826 linedegen 34372 epnsymrel 36603 padd02 37753 eldioph4b 40549 iblempty 43396 notatnand 44278 iota0ndef 44420 aiota0ndef 44476 fun2dmnopgexmpl 44663 |
Copyright terms: Public domain | W3C validator |