| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intnanr | Structured version Visualization version GIF version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 3-Apr-1995.) |
| Ref | Expression |
|---|---|
| intnan.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| intnanr | ⊢ ¬ (𝜑 ∧ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnan.1 | . 2 ⊢ ¬ 𝜑 | |
| 2 | simpl 482 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 3 | 1, 2 | mto 197 | 1 ⊢ ¬ (𝜑 ∧ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: falantru 1574 rab0 4366 0nelopab 5552 0nelxp 5699 co02 6260 xrltnr 13143 pnfnlt 13152 nltmnf 13153 0nelfz1 13565 smu02 16506 0g0 18646 nolt02o 27676 nogt01o 27677 axlowdimlem13 28899 axlowdimlem16 28902 axlowdim 28906 signstfvneq0 34546 gonanegoal 35316 gonan0 35356 goaln0 35357 fmla0disjsuc 35362 bcneg1 35695 linedegen 36103 epnsymrel 38522 padd02 39773 eldioph4b 42785 iblempty 45937 notatnand 46866 iota0ndef 47009 aiota0ndef 47067 fun2dmnopgexmpl 47254 |
| Copyright terms: Public domain | W3C validator |