MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falnantru Structured version   Visualization version   GIF version

Theorem falnantru 1583
Description: A identity. (Contributed by Anthony Hart, 23-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
falnantru ((⊥ ⊼ ⊤) ↔ ⊤)

Proof of Theorem falnantru
StepHypRef Expression
1 nancom 1496 . 2 ((⊥ ⊼ ⊤) ↔ (⊤ ⊼ ⊥))
2 trunanfal 1582 . 2 ((⊤ ⊼ ⊥) ↔ ⊤)
31, 2bitri 275 1 ((⊥ ⊼ ⊤) ↔ ⊤)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wnan 1491  wtru 1541  wfal 1552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-nan 1492  df-tru 1543  df-fal 1553
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator