| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > falnantru | Structured version Visualization version GIF version | ||
| Description: A ⊼ identity. (Contributed by Anthony Hart, 23-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
| Ref | Expression |
|---|---|
| falnantru | ⊢ ((⊥ ⊼ ⊤) ↔ ⊤) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nancom 1496 | . 2 ⊢ ((⊥ ⊼ ⊤) ↔ (⊤ ⊼ ⊥)) | |
| 2 | trunanfal 1582 | . 2 ⊢ ((⊤ ⊼ ⊥) ↔ ⊤) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ ((⊥ ⊼ ⊤) ↔ ⊤) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ⊼ wnan 1491 ⊤wtru 1541 ⊥wfal 1552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-nan 1492 df-tru 1543 df-fal 1553 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |