MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falnantru Structured version   Visualization version   GIF version

Theorem falnantru 1582
Description: A identity. (Contributed by Anthony Hart, 23-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
falnantru ((⊥ ⊼ ⊤) ↔ ⊤)

Proof of Theorem falnantru
StepHypRef Expression
1 nancom 1488 . 2 ((⊥ ⊼ ⊤) ↔ (⊤ ⊼ ⊥))
2 trunanfal 1581 . 2 ((⊤ ⊼ ⊥) ↔ ⊤)
31, 2bitri 274 1 ((⊥ ⊼ ⊤) ↔ ⊤)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wnan 1483  wtru 1540  wfal 1551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-nan 1484  df-tru 1542  df-fal 1552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator