|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > falnantru | Structured version Visualization version GIF version | ||
| Description: A ⊼ identity. (Contributed by Anthony Hart, 23-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.) | 
| Ref | Expression | 
|---|---|
| falnantru | ⊢ ((⊥ ⊼ ⊤) ↔ ⊤) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nancom 1495 | . 2 ⊢ ((⊥ ⊼ ⊤) ↔ (⊤ ⊼ ⊥)) | |
| 2 | trunanfal 1581 | . 2 ⊢ ((⊤ ⊼ ⊥) ↔ ⊤) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ ((⊥ ⊼ ⊤) ↔ ⊤) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ⊼ wnan 1490 ⊤wtru 1540 ⊥wfal 1551 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-nan 1491 df-tru 1542 df-fal 1552 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |