MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nancom Structured version   Visualization version   GIF version

Theorem nancom 1491
Description: Alternative denial is commutative. Remark: alternative denial is not associative, see nanass 1505. (Contributed by Mario Carneiro, 9-May-2015.) (Proof shortened by Wolf Lammen, 26-Jun-2020.)
Assertion
Ref Expression
nancom ((𝜑𝜓) ↔ (𝜓𝜑))

Proof of Theorem nancom
StepHypRef Expression
1 con2b 360 . 2 ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑))
2 dfnan2 1489 . 2 ((𝜑𝜓) ↔ (𝜑 → ¬ 𝜓))
3 dfnan2 1489 . 2 ((𝜓𝜑) ↔ (𝜓 → ¬ 𝜑))
41, 2, 33bitr4i 303 1 ((𝜑𝜓) ↔ (𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wnan 1486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-nan 1487
This theorem is referenced by:  nanbi2  1497  nanass  1505  falnantru  1582
  Copyright terms: Public domain W3C validator