Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nancom | Structured version Visualization version GIF version |
Description: Alternative denial is commutative. Remark: alternative denial is not associative, see nanass 1502. (Contributed by Mario Carneiro, 9-May-2015.) (Proof shortened by Wolf Lammen, 26-Jun-2020.) |
Ref | Expression |
---|---|
nancom | ⊢ ((𝜑 ⊼ 𝜓) ↔ (𝜓 ⊼ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2b 359 | . 2 ⊢ ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑)) | |
2 | dfnan2 1486 | . 2 ⊢ ((𝜑 ⊼ 𝜓) ↔ (𝜑 → ¬ 𝜓)) | |
3 | dfnan2 1486 | . 2 ⊢ ((𝜓 ⊼ 𝜑) ↔ (𝜓 → ¬ 𝜑)) | |
4 | 1, 2, 3 | 3bitr4i 302 | 1 ⊢ ((𝜑 ⊼ 𝜓) ↔ (𝜓 ⊼ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ⊼ wnan 1483 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-nan 1484 |
This theorem is referenced by: nanbi2 1494 nanass 1502 falnantru 1582 |
Copyright terms: Public domain | W3C validator |