MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falnanfal Structured version   Visualization version   GIF version

Theorem falnanfal 1698
Description: A identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
falnanfal ((⊥ ⊼ ⊥) ↔ ⊤)

Proof of Theorem falnanfal
StepHypRef Expression
1 nannot 1619 . 2 (¬ ⊥ ↔ (⊥ ⊼ ⊥))
2 notfal 1682 . 2 (¬ ⊥ ↔ ⊤)
31, 2bitr3i 269 1 ((⊥ ⊼ ⊥) ↔ ⊤)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 198  wnan 1609  wtru 1654  wfal 1666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 386  df-nan 1610  df-tru 1657  df-fal 1667
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator