Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > falnanfal | Structured version Visualization version GIF version |
Description: A ⊼ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
Ref | Expression |
---|---|
falnanfal | ⊢ ((⊥ ⊼ ⊥) ↔ ⊤) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nannot 1490 | . 2 ⊢ (¬ ⊥ ↔ (⊥ ⊼ ⊥)) | |
2 | notfal 1566 | . 2 ⊢ (¬ ⊥ ↔ ⊤) | |
3 | 1, 2 | bitr3i 280 | 1 ⊢ ((⊥ ⊼ ⊥) ↔ ⊤) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 ⊼ wnan 1482 ⊤wtru 1539 ⊥wfal 1550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-nan 1483 df-tru 1541 df-fal 1551 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |