MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falnanfal Structured version   Visualization version   GIF version

Theorem falnanfal 1583
Description: A identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
falnanfal ((⊥ ⊼ ⊥) ↔ ⊤)

Proof of Theorem falnanfal
StepHypRef Expression
1 nannot 1494 . 2 (¬ ⊥ ↔ (⊥ ⊼ ⊥))
2 notfal 1567 . 2 (¬ ⊥ ↔ ⊤)
31, 2bitr3i 276 1 ((⊥ ⊼ ⊥) ↔ ⊤)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wnan 1486  wtru 1540  wfal 1551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-nan 1487  df-tru 1542  df-fal 1552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator