MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falxortru Structured version   Visualization version   GIF version

Theorem falxortru 1589
Description: A identity. (Contributed by David A. Wheeler, 9-May-2015.) (Proof shortened by Wolf Lammen, 10-Jul-2020.)
Assertion
Ref Expression
falxortru ((⊥ ⊻ ⊤) ↔ ⊤)

Proof of Theorem falxortru
StepHypRef Expression
1 xorcom 1509 . 2 ((⊥ ⊻ ⊤) ↔ (⊤ ⊻ ⊥))
2 truxorfal 1588 . 2 ((⊤ ⊻ ⊥) ↔ ⊤)
31, 2bitri 274 1 ((⊥ ⊻ ⊤) ↔ ⊤)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wxo 1506  wtru 1543  wfal 1554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-xor 1507  df-tru 1545  df-fal 1555
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator