| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > falxorfal | Structured version Visualization version GIF version | ||
| Description: A ⊻ identity. (Contributed by David A. Wheeler, 9-May-2015.) |
| Ref | Expression |
|---|---|
| falxorfal | ⊢ ((⊥ ⊻ ⊥) ↔ ⊥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xor 1512 | . . 3 ⊢ ((⊥ ⊻ ⊥) ↔ ¬ (⊥ ↔ ⊥)) | |
| 2 | falbifal 1572 | . . 3 ⊢ ((⊥ ↔ ⊥) ↔ ⊤) | |
| 3 | 1, 2 | xchbinx 334 | . 2 ⊢ ((⊥ ⊻ ⊥) ↔ ¬ ⊤) |
| 4 | nottru 1567 | . 2 ⊢ (¬ ⊤ ↔ ⊥) | |
| 5 | 3, 4 | bitri 275 | 1 ⊢ ((⊥ ⊻ ⊥) ↔ ⊥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ⊻ wxo 1511 ⊤wtru 1541 ⊥wfal 1552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-xor 1512 df-tru 1543 df-fal 1553 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |