Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > falxorfal | Structured version Visualization version GIF version |
Description: A ⊻ identity. (Contributed by David A. Wheeler, 9-May-2015.) |
Ref | Expression |
---|---|
falxorfal | ⊢ ((⊥ ⊻ ⊥) ↔ ⊥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xor 1504 | . . 3 ⊢ ((⊥ ⊻ ⊥) ↔ ¬ (⊥ ↔ ⊥)) | |
2 | falbifal 1571 | . . 3 ⊢ ((⊥ ↔ ⊥) ↔ ⊤) | |
3 | 1, 2 | xchbinx 333 | . 2 ⊢ ((⊥ ⊻ ⊥) ↔ ¬ ⊤) |
4 | nottru 1566 | . 2 ⊢ (¬ ⊤ ↔ ⊥) | |
5 | 3, 4 | bitri 274 | 1 ⊢ ((⊥ ⊻ ⊥) ↔ ⊥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ⊻ wxo 1503 ⊤wtru 1540 ⊥wfal 1551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-xor 1504 df-tru 1542 df-fal 1552 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |