MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xorcom Structured version   Visualization version   GIF version

Theorem xorcom 1505
Description: The connector is commutative. (Contributed by Mario Carneiro, 4-Sep-2016.) (Proof shortened by Wolf Lammen, 21-Apr-2024.)
Assertion
Ref Expression
xorcom ((𝜑𝜓) ↔ (𝜓𝜑))

Proof of Theorem xorcom
StepHypRef Expression
1 df-xor 1503 . . 3 ((𝜑𝜓) ↔ ¬ (𝜑𝜓))
2 bicom 225 . . 3 ((𝜑𝜓) ↔ (𝜓𝜑))
31, 2xchbinx 337 . 2 ((𝜑𝜓) ↔ ¬ (𝜓𝜑))
4 df-xor 1503 . 2 ((𝜓𝜑) ↔ ¬ (𝜓𝜑))
53, 4bitr4i 281 1 ((𝜑𝜓) ↔ (𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wxo 1502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-xor 1503
This theorem is referenced by:  xorneg1  1514  falxortru  1585  hadcomaOLD  1601  hadcomb  1602  cadcoma  1614
  Copyright terms: Public domain W3C validator