Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xorcom | Structured version Visualization version GIF version |
Description: The connector ⊻ is commutative. (Contributed by Mario Carneiro, 4-Sep-2016.) (Proof shortened by Wolf Lammen, 21-Apr-2024.) |
Ref | Expression |
---|---|
xorcom | ⊢ ((𝜑 ⊻ 𝜓) ↔ (𝜓 ⊻ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xor 1504 | . . 3 ⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) | |
2 | bicom 221 | . . 3 ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) | |
3 | 1, 2 | xchbinx 333 | . 2 ⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜓 ↔ 𝜑)) |
4 | df-xor 1504 | . 2 ⊢ ((𝜓 ⊻ 𝜑) ↔ ¬ (𝜓 ↔ 𝜑)) | |
5 | 3, 4 | bitr4i 277 | 1 ⊢ ((𝜑 ⊻ 𝜓) ↔ (𝜓 ⊻ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ⊻ wxo 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-xor 1504 |
This theorem is referenced by: xorneg1 1515 falxortru 1586 hadcomaOLD 1602 hadcomb 1603 cadcoma 1615 |
Copyright terms: Public domain | W3C validator |