|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > xorcom | Structured version Visualization version GIF version | ||
| Description: The connector ⊻ is commutative. (Contributed by Mario Carneiro, 4-Sep-2016.) (Proof shortened by Wolf Lammen, 21-Apr-2024.) | 
| Ref | Expression | 
|---|---|
| xorcom | ⊢ ((𝜑 ⊻ 𝜓) ↔ (𝜓 ⊻ 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-xor 1512 | . . 3 ⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) | |
| 2 | bicom 222 | . . 3 ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) | |
| 3 | 1, 2 | xchbinx 334 | . 2 ⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜓 ↔ 𝜑)) | 
| 4 | df-xor 1512 | . 2 ⊢ ((𝜓 ⊻ 𝜑) ↔ ¬ (𝜓 ↔ 𝜑)) | |
| 5 | 3, 4 | bitr4i 278 | 1 ⊢ ((𝜑 ⊻ 𝜓) ↔ (𝜓 ⊻ 𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 ⊻ wxo 1511 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-xor 1512 | 
| This theorem is referenced by: xorneg1 1522 falxortru 1587 hadcomb 1600 cadcoma 1612 oneptri 43269 | 
| Copyright terms: Public domain | W3C validator |