MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fdmOLD Structured version   Visualization version   GIF version

Theorem fdmOLD 6507
Description: Obsolete version of fdm 6506 as of 29-May-2024. (Contributed by NM, 2-Aug-1994.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
fdmOLD (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)

Proof of Theorem fdmOLD
StepHypRef Expression
1 ffn 6498 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 fndm 6436 . 2 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
31, 2syl 17 1 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  dom cdm 5524   Fn wfn 6330  wf 6331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-fn 6338  df-f 6339
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator