![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-fn | Structured version Visualization version GIF version |
Description: Define a function with domain. Definition 6.15(1) of [TakeutiZaring] p. 27. For alternate definitions, see dffn2 6720, dffn3 6731, dffn4 6812, and dffn5 6951. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-fn | ⊢ (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | wfn 6539 | . 2 wff 𝐴 Fn 𝐵 |
4 | 1 | wfun 6538 | . . 3 wff Fun 𝐴 |
5 | 1 | cdm 5677 | . . . 4 class dom 𝐴 |
6 | 5, 2 | wceq 1539 | . . 3 wff dom 𝐴 = 𝐵 |
7 | 4, 6 | wa 394 | . 2 wff (Fun 𝐴 ∧ dom 𝐴 = 𝐵) |
8 | 3, 7 | wb 205 | 1 wff (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
This definition is referenced by: funfn 6579 fnsng 6601 fnprg 6608 fntpg 6609 fntp 6610 fncnv 6622 fneq1 6641 fneq2 6642 nffn 6649 fnfun 6650 fndm 6653 fnun 6664 fncoOLD 6669 fnssresb 6673 fnres 6678 idfn 6679 fn0 6682 mptfnf 6686 fnopabg 6688 sbcfng 6715 fdmrn 6750 fcoi1 6766 f00 6774 f1cnvcnv 6798 fores 6816 dff1o4 6842 foimacnv 6851 funfv 6979 fvimacnvALT 7059 respreima 7068 dff3 7102 fpr 7155 fnsnb 7167 fnprb 7213 fnex 7222 fliftf 7316 fnoprabg 7535 fiun 7933 f1iun 7934 f1oweALT 7963 curry1 8094 curry2 8097 tposfn2 8237 frrlem11 8285 frrlem12 8286 fpr1 8292 wfrlem13OLD 8325 wfr1OLD 8331 tfrlem10 8391 tfr1 8401 frfnom 8439 undifixp 8932 sbthlem9 9095 fodomr 9132 frr1 9758 rankf 9793 cardf2 9942 axdc3lem2 10450 nqerf 10929 axaddf 11144 axmulf 11145 uzrdgfni 13929 hashkf 14298 shftfn 15026 imasaddfnlem 17480 imasvscafn 17489 fntopon 22648 cnextf 23792 ftc1cn 25794 nofnbday 27389 scutf 27548 grporn 30039 ffsrn 32219 measdivcstALTV 33519 bnj1422 34144 satff 34697 fnsingle 35193 fnimage 35203 imageval 35204 dfrecs2 35224 dfrdg4 35225 bj-isrvec 36480 ftc1cnnc 36865 fnresfnco 46051 funcoressn 46052 afvco2 46184 |
Copyright terms: Public domain | W3C validator |