| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-fn | Structured version Visualization version GIF version | ||
| Description: Define a function with domain. Definition 6.15(1) of [TakeutiZaring] p. 27. For alternate definitions, see dffn2 6672, dffn3 6682, dffn4 6760, and dffn5 6901. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-fn | ⊢ (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | wfn 6494 | . 2 wff 𝐴 Fn 𝐵 |
| 4 | 1 | wfun 6493 | . . 3 wff Fun 𝐴 |
| 5 | 1 | cdm 5631 | . . . 4 class dom 𝐴 |
| 6 | 5, 2 | wceq 1540 | . . 3 wff dom 𝐴 = 𝐵 |
| 7 | 4, 6 | wa 395 | . 2 wff (Fun 𝐴 ∧ dom 𝐴 = 𝐵) |
| 8 | 3, 7 | wb 206 | 1 wff (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: funfn 6530 fnsng 6552 fnprg 6559 fntpg 6560 fntp 6561 fncnv 6573 fneq1 6591 fneq2 6592 nffn 6599 fnfun 6600 fndm 6603 fnun 6614 fnssresb 6622 fnres 6627 idfn 6628 fn0 6631 mptfnf 6635 fnopabg 6637 sbcfng 6667 fdmrn 6701 fcoi1 6716 f00 6724 f1cnvcnv 6747 fores 6764 dff1o4 6790 foimacnv 6799 funfv 6930 fvimacnvALT 7011 respreima 7020 dff3 7054 fpr 7108 fnsnbOLD 7122 fnprb 7164 fnex 7173 fliftf 7272 fnoprabg 7492 fiun 7901 f1iun 7902 f1oweALT 7930 curry1 8060 curry2 8063 tposfn2 8204 frrlem11 8252 frrlem12 8253 fpr1 8259 tfrlem10 8332 tfr1 8342 frfnom 8380 undifixp 8884 sbthlem9 9036 fodomr 9069 fodomfir 9255 frr1 9688 rankf 9723 cardf2 9872 axdc3lem2 10380 nqerf 10859 axaddf 11074 axmulf 11075 uzrdgfni 13899 hashkf 14273 shftfn 15015 imasaddfnlem 17467 imasvscafn 17476 fntopon 22787 cnextf 23929 ftc1cn 25926 nofnbday 27540 scutf 27700 onsiso 28145 noseqrdgfn 28176 bdayn0sf1o 28235 grporn 30423 ffsrn 32625 measdivcstALTV 34188 bnj1422 34800 satff 35370 fnsingle 35880 fnimage 35890 imageval 35891 dfrecs2 35911 dfrdg4 35912 bj-isrvec 37255 ftc1cnnc 37659 modelaxreplem1 44941 fnresfnco 47015 funcoressn 47016 afvco2 47150 |
| Copyright terms: Public domain | W3C validator |