Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-fn | Structured version Visualization version GIF version |
Description: Define a function with domain. Definition 6.15(1) of [TakeutiZaring] p. 27. For alternate definitions, see dffn2 6583, dffn3 6594, dffn4 6675, and dffn5 6807. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-fn | ⊢ (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | wfn 6410 | . 2 wff 𝐴 Fn 𝐵 |
4 | 1 | wfun 6409 | . . 3 wff Fun 𝐴 |
5 | 1 | cdm 5579 | . . . 4 class dom 𝐴 |
6 | 5, 2 | wceq 1543 | . . 3 wff dom 𝐴 = 𝐵 |
7 | 4, 6 | wa 399 | . 2 wff (Fun 𝐴 ∧ dom 𝐴 = 𝐵) |
8 | 3, 7 | wb 209 | 1 wff (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
This definition is referenced by: funfn 6445 fnsng 6467 fnprg 6474 fntpg 6475 fntp 6476 fncnv 6488 fneq1 6505 fneq2 6506 nffn 6513 fnfun 6514 fndm 6517 fnun 6526 fncoOLD 6531 fnssresb 6535 fnres 6540 idfn 6541 fnresiOLD 6543 fn0 6545 mptfnf 6549 fnopabg 6551 sbcfng 6578 fdmrn 6613 fcoi1 6629 f00 6637 f1cnvcnv 6661 fores 6679 dff1o4 6705 foimacnv 6714 funfv 6834 fvimacnvALT 6913 respreima 6922 dff3 6955 fpr 7005 fnsnb 7017 fnprb 7063 fnex 7072 fliftf 7163 fnoprabg 7372 fiun 7756 f1iun 7757 f1oweALT 7785 curry1 7912 curry2 7915 tposfn2 8032 frrlem11 8079 frrlem12 8080 fpr1 8085 wfrlem13 8109 wfr1 8115 tfrlem10 8165 tfr1 8175 frfnom 8212 undifixp 8657 sbthlem9 8808 fodomr 8841 frr1 9423 rankf 9458 cardf2 9607 axdc3lem2 10113 nqerf 10592 axaddf 10807 axmulf 10808 uzrdgfni 13581 hashkf 13949 shftfn 14687 imasaddfnlem 17131 imasvscafn 17140 fntopon 21956 cnextf 23100 ftc1cn 25087 grporn 28759 ffsrn 30941 measdivcstALTV 32068 bnj1422 32692 satff 33247 nofnbday 33757 scutf 33908 fnsingle 34123 fnimage 34133 imageval 34134 dfrecs2 34154 dfrdg4 34155 bj-isrvec 35368 ftc1cnnc 35755 fnresfnco 44395 funcoressn 44396 afvco2 44528 |
Copyright terms: Public domain | W3C validator |