| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-fn | Structured version Visualization version GIF version | ||
| Description: Define a function with domain. Definition 6.15(1) of [TakeutiZaring] p. 27. For alternate definitions, see dffn2 6707, dffn3 6717, dffn4 6795, and dffn5 6936. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-fn | ⊢ (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | wfn 6525 | . 2 wff 𝐴 Fn 𝐵 |
| 4 | 1 | wfun 6524 | . . 3 wff Fun 𝐴 |
| 5 | 1 | cdm 5654 | . . . 4 class dom 𝐴 |
| 6 | 5, 2 | wceq 1540 | . . 3 wff dom 𝐴 = 𝐵 |
| 7 | 4, 6 | wa 395 | . 2 wff (Fun 𝐴 ∧ dom 𝐴 = 𝐵) |
| 8 | 3, 7 | wb 206 | 1 wff (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: funfn 6565 fnsng 6587 fnprg 6594 fntpg 6595 fntp 6596 fncnv 6608 fneq1 6628 fneq2 6629 nffn 6636 fnfun 6637 fndm 6640 fnun 6651 fnssresb 6659 fnres 6664 idfn 6665 fn0 6668 mptfnf 6672 fnopabg 6674 sbcfng 6702 fdmrn 6736 fcoi1 6751 f00 6759 f1cnvcnv 6782 fores 6799 dff1o4 6825 foimacnv 6834 funfv 6965 fvimacnvALT 7046 respreima 7055 dff3 7089 fpr 7143 fnsnbOLD 7157 fnprb 7199 fnex 7208 fliftf 7307 fnoprabg 7528 fiun 7939 f1iun 7940 f1oweALT 7969 curry1 8101 curry2 8104 tposfn2 8245 frrlem11 8293 frrlem12 8294 fpr1 8300 wfrlem13OLD 8333 wfr1OLD 8339 tfrlem10 8399 tfr1 8409 frfnom 8447 undifixp 8946 sbthlem9 9103 fodomr 9140 fodomfir 9338 frr1 9771 rankf 9806 cardf2 9955 axdc3lem2 10463 nqerf 10942 axaddf 11157 axmulf 11158 uzrdgfni 13974 hashkf 14348 shftfn 15090 imasaddfnlem 17540 imasvscafn 17549 fntopon 22860 cnextf 24002 ftc1cn 26000 nofnbday 27614 scutf 27774 noseqrdgfn 28229 grporn 30448 ffsrn 32652 measdivcstALTV 34202 bnj1422 34814 satff 35378 fnsingle 35883 fnimage 35893 imageval 35894 dfrecs2 35914 dfrdg4 35915 bj-isrvec 37258 ftc1cnnc 37662 modelaxreplem1 44951 fnresfnco 47018 funcoressn 47019 afvco2 47153 |
| Copyright terms: Public domain | W3C validator |