Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-fn | Structured version Visualization version GIF version |
Description: Define a function with domain. Definition 6.15(1) of [TakeutiZaring] p. 27. For alternate definitions, see dffn2 6654, dffn3 6665, dffn4 6746, and dffn5 6885. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-fn | ⊢ (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | wfn 6475 | . 2 wff 𝐴 Fn 𝐵 |
4 | 1 | wfun 6474 | . . 3 wff Fun 𝐴 |
5 | 1 | cdm 5621 | . . . 4 class dom 𝐴 |
6 | 5, 2 | wceq 1540 | . . 3 wff dom 𝐴 = 𝐵 |
7 | 4, 6 | wa 396 | . 2 wff (Fun 𝐴 ∧ dom 𝐴 = 𝐵) |
8 | 3, 7 | wb 205 | 1 wff (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
This definition is referenced by: funfn 6515 fnsng 6537 fnprg 6544 fntpg 6545 fntp 6546 fncnv 6558 fneq1 6577 fneq2 6578 nffn 6585 fnfun 6586 fndm 6589 fnun 6598 fncoOLD 6603 fnssresb 6607 fnres 6612 idfn 6613 fn0 6616 mptfnf 6620 fnopabg 6622 sbcfng 6649 fdmrn 6684 fcoi1 6700 f00 6708 f1cnvcnv 6732 fores 6750 dff1o4 6776 foimacnv 6785 funfv 6912 fvimacnvALT 6991 respreima 7000 dff3 7033 fpr 7083 fnsnb 7095 fnprb 7141 fnex 7150 fliftf 7243 fnoprabg 7460 fiun 7854 f1iun 7855 f1oweALT 7884 curry1 8013 curry2 8016 tposfn2 8135 frrlem11 8183 frrlem12 8184 fpr1 8190 wfrlem13OLD 8223 wfr1OLD 8229 tfrlem10 8289 tfr1 8299 frfnom 8337 undifixp 8794 sbthlem9 8957 fodomr 8994 frr1 9617 rankf 9652 cardf2 9801 axdc3lem2 10309 nqerf 10788 axaddf 11003 axmulf 11004 uzrdgfni 13780 hashkf 14148 shftfn 14884 imasaddfnlem 17337 imasvscafn 17346 fntopon 22180 cnextf 23324 ftc1cn 25314 nofnbday 26907 scutf 27058 grporn 29172 ffsrn 31351 measdivcstALTV 32491 bnj1422 33116 satff 33671 fnsingle 34360 fnimage 34370 imageval 34371 dfrecs2 34391 dfrdg4 34392 bj-isrvec 35621 ftc1cnnc 36005 fnresfnco 44953 funcoressn 44954 afvco2 45086 |
Copyright terms: Public domain | W3C validator |