| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-fn | Structured version Visualization version GIF version | ||
| Description: Define a function with domain. Definition 6.15(1) of [TakeutiZaring] p. 27. For alternate definitions, see dffn2 6690, dffn3 6700, dffn4 6778, and dffn5 6919. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-fn | ⊢ (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | wfn 6506 | . 2 wff 𝐴 Fn 𝐵 |
| 4 | 1 | wfun 6505 | . . 3 wff Fun 𝐴 |
| 5 | 1 | cdm 5638 | . . . 4 class dom 𝐴 |
| 6 | 5, 2 | wceq 1540 | . . 3 wff dom 𝐴 = 𝐵 |
| 7 | 4, 6 | wa 395 | . 2 wff (Fun 𝐴 ∧ dom 𝐴 = 𝐵) |
| 8 | 3, 7 | wb 206 | 1 wff (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: funfn 6546 fnsng 6568 fnprg 6575 fntpg 6576 fntp 6577 fncnv 6589 fneq1 6609 fneq2 6610 nffn 6617 fnfun 6618 fndm 6621 fnun 6632 fnssresb 6640 fnres 6645 idfn 6646 fn0 6649 mptfnf 6653 fnopabg 6655 sbcfng 6685 fdmrn 6719 fcoi1 6734 f00 6742 f1cnvcnv 6765 fores 6782 dff1o4 6808 foimacnv 6817 funfv 6948 fvimacnvALT 7029 respreima 7038 dff3 7072 fpr 7126 fnsnbOLD 7140 fnprb 7182 fnex 7191 fliftf 7290 fnoprabg 7512 fiun 7921 f1iun 7922 f1oweALT 7951 curry1 8083 curry2 8086 tposfn2 8227 frrlem11 8275 frrlem12 8276 fpr1 8282 tfrlem10 8355 tfr1 8365 frfnom 8403 undifixp 8907 sbthlem9 9059 fodomr 9092 fodomfir 9279 frr1 9712 rankf 9747 cardf2 9896 axdc3lem2 10404 nqerf 10883 axaddf 11098 axmulf 11099 uzrdgfni 13923 hashkf 14297 shftfn 15039 imasaddfnlem 17491 imasvscafn 17500 fntopon 22811 cnextf 23953 ftc1cn 25950 nofnbday 27564 scutf 27724 onsiso 28169 noseqrdgfn 28200 bdayn0sf1o 28259 grporn 30450 ffsrn 32652 measdivcstALTV 34215 bnj1422 34827 satff 35397 fnsingle 35907 fnimage 35917 imageval 35918 dfrecs2 35938 dfrdg4 35939 bj-isrvec 37282 ftc1cnnc 37686 modelaxreplem1 44968 fnresfnco 47039 funcoressn 47040 afvco2 47174 |
| Copyright terms: Public domain | W3C validator |