| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-fn | Structured version Visualization version GIF version | ||
| Description: Define a function with domain. Definition 6.15(1) of [TakeutiZaring] p. 27. For alternate definitions, see dffn2 6653, dffn3 6663, dffn4 6741, and dffn5 6880. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-fn | ⊢ (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | wfn 6476 | . 2 wff 𝐴 Fn 𝐵 |
| 4 | 1 | wfun 6475 | . . 3 wff Fun 𝐴 |
| 5 | 1 | cdm 5614 | . . . 4 class dom 𝐴 |
| 6 | 5, 2 | wceq 1541 | . . 3 wff dom 𝐴 = 𝐵 |
| 7 | 4, 6 | wa 395 | . 2 wff (Fun 𝐴 ∧ dom 𝐴 = 𝐵) |
| 8 | 3, 7 | wb 206 | 1 wff (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: funfn 6511 fnsng 6533 fnprg 6540 fntpg 6541 fntp 6542 fncnv 6554 fneq1 6572 fneq2 6573 nffn 6580 fnfun 6581 fndm 6584 fnun 6595 fnssresb 6603 fnres 6608 idfn 6609 fn0 6612 mptfnf 6616 fnopabg 6618 sbcfng 6648 fdmrn 6682 fcoi1 6697 f00 6705 f1cnvcnv 6728 fores 6745 dff1o4 6771 foimacnv 6780 funfv 6909 fvimacnvALT 6990 respreima 6999 dff3 7033 fpr 7087 fnsnbOLD 7100 fnprb 7142 fnex 7151 fliftf 7249 fnoprabg 7469 fiun 7875 f1iun 7876 f1oweALT 7904 curry1 8034 curry2 8037 tposfn2 8178 frrlem11 8226 frrlem12 8227 fpr1 8233 tfrlem10 8306 tfr1 8316 frfnom 8354 undifixp 8858 sbthlem9 9008 fodomr 9041 fodomfir 9212 frr1 9652 rankf 9687 cardf2 9836 axdc3lem2 10342 nqerf 10821 axaddf 11036 axmulf 11037 uzrdgfni 13865 hashkf 14239 shftfn 14980 imasaddfnlem 17432 imasvscafn 17441 nfchnd 18517 fntopon 22839 cnextf 23981 ftc1cn 25977 nofnbday 27591 scutf 27753 onsiso 28205 noseqrdgfn 28236 bdayn0sf1o 28295 grporn 30501 ffsrn 32711 measdivcstALTV 34238 bnj1422 34849 satff 35454 fnsingle 35961 fnimage 35971 imageval 35972 dfrecs2 35994 dfrdg4 35995 bj-isrvec 37338 ftc1cnnc 37742 modelaxreplem1 45081 fnresfnco 47151 funcoressn 47152 afvco2 47286 |
| Copyright terms: Public domain | W3C validator |