![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-fn | Structured version Visualization version GIF version |
Description: Define a function with domain. Definition 6.15(1) of [TakeutiZaring] p. 27. For alternate definitions, see dffn2 6720, dffn3 6731, dffn4 6812, and dffn5 6951. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-fn | ⊢ (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | wfn 6539 | . 2 wff 𝐴 Fn 𝐵 |
4 | 1 | wfun 6538 | . . 3 wff Fun 𝐴 |
5 | 1 | cdm 5677 | . . . 4 class dom 𝐴 |
6 | 5, 2 | wceq 1542 | . . 3 wff dom 𝐴 = 𝐵 |
7 | 4, 6 | wa 397 | . 2 wff (Fun 𝐴 ∧ dom 𝐴 = 𝐵) |
8 | 3, 7 | wb 205 | 1 wff (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
This definition is referenced by: funfn 6579 fnsng 6601 fnprg 6608 fntpg 6609 fntp 6610 fncnv 6622 fneq1 6641 fneq2 6642 nffn 6649 fnfun 6650 fndm 6653 fnun 6664 fncoOLD 6669 fnssresb 6673 fnres 6678 idfn 6679 fn0 6682 mptfnf 6686 fnopabg 6688 sbcfng 6715 fdmrn 6750 fcoi1 6766 f00 6774 f1cnvcnv 6798 fores 6816 dff1o4 6842 foimacnv 6851 funfv 6979 fvimacnvALT 7059 respreima 7068 dff3 7102 fpr 7152 fnsnb 7164 fnprb 7210 fnex 7219 fliftf 7312 fnoprabg 7531 fiun 7929 f1iun 7930 f1oweALT 7959 curry1 8090 curry2 8093 tposfn2 8233 frrlem11 8281 frrlem12 8282 fpr1 8288 wfrlem13OLD 8321 wfr1OLD 8327 tfrlem10 8387 tfr1 8397 frfnom 8435 undifixp 8928 sbthlem9 9091 fodomr 9128 frr1 9754 rankf 9789 cardf2 9938 axdc3lem2 10446 nqerf 10925 axaddf 11140 axmulf 11141 uzrdgfni 13923 hashkf 14292 shftfn 15020 imasaddfnlem 17474 imasvscafn 17483 fntopon 22426 cnextf 23570 ftc1cn 25560 nofnbday 27155 scutf 27313 grporn 29774 ffsrn 31954 measdivcstALTV 33223 bnj1422 33848 satff 34401 fnsingle 34891 fnimage 34901 imageval 34902 dfrecs2 34922 dfrdg4 34923 bj-isrvec 36175 ftc1cnnc 36560 fnresfnco 45751 funcoressn 45752 afvco2 45884 |
Copyright terms: Public domain | W3C validator |