Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-fn | Structured version Visualization version GIF version |
Description: Define a function with domain. Definition 6.15(1) of [TakeutiZaring] p. 27. For alternate definitions, see dffn2 6602, dffn3 6613, dffn4 6694, and dffn5 6828. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-fn | ⊢ (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | wfn 6428 | . 2 wff 𝐴 Fn 𝐵 |
4 | 1 | wfun 6427 | . . 3 wff Fun 𝐴 |
5 | 1 | cdm 5589 | . . . 4 class dom 𝐴 |
6 | 5, 2 | wceq 1539 | . . 3 wff dom 𝐴 = 𝐵 |
7 | 4, 6 | wa 396 | . 2 wff (Fun 𝐴 ∧ dom 𝐴 = 𝐵) |
8 | 3, 7 | wb 205 | 1 wff (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
This definition is referenced by: funfn 6464 fnsng 6486 fnprg 6493 fntpg 6494 fntp 6495 fncnv 6507 fneq1 6524 fneq2 6525 nffn 6532 fnfun 6533 fndm 6536 fnun 6545 fncoOLD 6550 fnssresb 6554 fnres 6559 idfn 6560 fnresiOLD 6562 fn0 6564 mptfnf 6568 fnopabg 6570 sbcfng 6597 fdmrn 6632 fcoi1 6648 f00 6656 f1cnvcnv 6680 fores 6698 dff1o4 6724 foimacnv 6733 funfv 6855 fvimacnvALT 6934 respreima 6943 dff3 6976 fpr 7026 fnsnb 7038 fnprb 7084 fnex 7093 fliftf 7186 fnoprabg 7397 fiun 7785 f1iun 7786 f1oweALT 7815 curry1 7944 curry2 7947 tposfn2 8064 frrlem11 8112 frrlem12 8113 fpr1 8119 wfrlem13OLD 8152 wfr1OLD 8158 tfrlem10 8218 tfr1 8228 frfnom 8266 undifixp 8722 sbthlem9 8878 fodomr 8915 frr1 9517 rankf 9552 cardf2 9701 axdc3lem2 10207 nqerf 10686 axaddf 10901 axmulf 10902 uzrdgfni 13678 hashkf 14046 shftfn 14784 imasaddfnlem 17239 imasvscafn 17248 fntopon 22073 cnextf 23217 ftc1cn 25207 grporn 28883 ffsrn 31064 measdivcstALTV 32193 bnj1422 32817 satff 33372 nofnbday 33855 scutf 34006 fnsingle 34221 fnimage 34231 imageval 34232 dfrecs2 34252 dfrdg4 34253 bj-isrvec 35465 ftc1cnnc 35849 fnresfnco 44535 funcoressn 44536 afvco2 44668 |
Copyright terms: Public domain | W3C validator |