| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-fn | Structured version Visualization version GIF version | ||
| Description: Define a function with domain. Definition 6.15(1) of [TakeutiZaring] p. 27. For alternate definitions, see dffn2 6654, dffn3 6664, dffn4 6742, and dffn5 6881. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-fn | ⊢ (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | wfn 6477 | . 2 wff 𝐴 Fn 𝐵 |
| 4 | 1 | wfun 6476 | . . 3 wff Fun 𝐴 |
| 5 | 1 | cdm 5619 | . . . 4 class dom 𝐴 |
| 6 | 5, 2 | wceq 1540 | . . 3 wff dom 𝐴 = 𝐵 |
| 7 | 4, 6 | wa 395 | . 2 wff (Fun 𝐴 ∧ dom 𝐴 = 𝐵) |
| 8 | 3, 7 | wb 206 | 1 wff (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: funfn 6512 fnsng 6534 fnprg 6541 fntpg 6542 fntp 6543 fncnv 6555 fneq1 6573 fneq2 6574 nffn 6581 fnfun 6582 fndm 6585 fnun 6596 fnssresb 6604 fnres 6609 idfn 6610 fn0 6613 mptfnf 6617 fnopabg 6619 sbcfng 6649 fdmrn 6683 fcoi1 6698 f00 6706 f1cnvcnv 6729 fores 6746 dff1o4 6772 foimacnv 6781 funfv 6910 fvimacnvALT 6991 respreima 7000 dff3 7034 fpr 7088 fnsnbOLD 7102 fnprb 7144 fnex 7153 fliftf 7252 fnoprabg 7472 fiun 7878 f1iun 7879 f1oweALT 7907 curry1 8037 curry2 8040 tposfn2 8181 frrlem11 8229 frrlem12 8230 fpr1 8236 tfrlem10 8309 tfr1 8319 frfnom 8357 undifixp 8861 sbthlem9 9012 fodomr 9045 fodomfir 9218 frr1 9655 rankf 9690 cardf2 9839 axdc3lem2 10345 nqerf 10824 axaddf 11039 axmulf 11040 uzrdgfni 13865 hashkf 14239 shftfn 14980 imasaddfnlem 17432 imasvscafn 17441 fntopon 22809 cnextf 23951 ftc1cn 25948 nofnbday 27562 scutf 27723 onsiso 28174 noseqrdgfn 28205 bdayn0sf1o 28264 grporn 30465 ffsrn 32673 measdivcstALTV 34198 bnj1422 34810 satff 35393 fnsingle 35903 fnimage 35913 imageval 35914 dfrecs2 35934 dfrdg4 35935 bj-isrvec 37278 ftc1cnnc 37682 modelaxreplem1 44962 fnresfnco 47035 funcoressn 47036 afvco2 47170 |
| Copyright terms: Public domain | W3C validator |