Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fndm | Structured version Visualization version GIF version |
Description: The domain of a function. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
fndm | ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fn 6421 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
2 | 1 | simprbi 496 | 1 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 dom cdm 5580 Fun wfun 6412 Fn wfn 6413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-fn 6421 |
This theorem is referenced by: fndmi 6521 fndmd 6522 funfni 6523 fndmu 6524 fnbr 6525 fncofn 6532 fnco 6533 fncoOLD 6534 fnresdm 6535 fnresdisj 6536 fnssresb 6538 fn0 6548 fnimadisj 6549 fnimaeq0 6550 fdmOLD 6594 f1dmOLD 6659 f1odm 6704 fvelimab 6823 fvun1 6841 eqfnfv2 6892 fndmdif 6901 fneqeql2 6906 elpreima 6917 fsn2 6990 fnprb 7066 fntpb 7067 fconst3 7071 fconst4 7072 fnfvima 7091 fnunirn 7108 dff13 7109 nvof1o 7133 f1eqcocnvOLD 7154 oprssov 7419 fnexALT 7767 dmmpogaOLD 7887 curry1 7915 curry1val 7916 curry2 7918 curry2val 7920 fparlem3 7925 fparlem4 7926 offsplitfpar 7931 suppvalfng 7955 suppvalfn 7956 suppfnss 7976 fnsuppres 7978 tposfo2 8036 frrlem3 8075 frrlem4 8076 wfrlem3OLD 8112 wfrlem4OLD 8114 wfrdmclOLD 8119 wfrlem12OLD 8122 smodm2 8157 smoel2 8165 tfrlem8 8186 tfrlem9 8187 tfrlem9a 8188 tfrlem13 8192 tz7.44-3 8210 rdglim 8228 frsucmptn 8240 oaabs2 8439 omabs 8441 ixpprc 8665 undifixp 8680 bren 8701 brenOLD 8702 fndmeng 8779 inf0 9309 r1lim 9461 jech9.3 9503 ssrankr1 9524 rankuni 9552 dfac3 9808 cfsmolem 9957 fin23lem31 10030 itunitc1 10107 ituniiun 10109 fnct 10224 cfpwsdom 10271 grur1 10507 genpdm 10689 fsuppmapnn0fiublem 13638 fsuppmapnn0fiub 13639 hashfn 14018 cshimadifsn 14470 cshimadifsn0 14471 shftfn 14712 rlimi2 15151 phimullem 16408 restsspw 17059 prdsdsval 17106 fnpr2ob 17186 sscpwex 17444 sscfn1 17446 sscfn2 17447 isssc 17449 funcres 17527 xpcbas 17811 xpchomfval 17812 gsumpropd2lem 18278 psgndmsubg 19025 dsmmbas2 20854 dsmmelbas 20856 islindf4 20955 restbas 22217 ptval 22629 kqcldsat 22792 kqnrmlem1 22802 kqnrmlem2 22803 hmphtop 22837 ustn0 23280 uniiccdif 24647 cpncn 25005 cpnres 25006 ulmf2 25448 tglngne 26815 uhgrn0 27340 upgrfn 27360 upgrex 27365 umgrfn 27372 fnunres1 30846 fcoinver 30847 nfpconfp 30868 mdetpmtr1 31675 coinflipspace 32347 bnj945 32653 bnj545 32775 bnj548 32777 bnj570 32785 bnj900 32809 bnj929 32816 bnj983 32831 bnj1018g 32843 bnj1018 32844 bnj1110 32862 bnj1145 32873 bnj1245 32894 bnj1253 32897 bnj1286 32899 bnj1280 32900 bnj1296 32901 bnj1311 32904 bnj1450 32930 bnj1498 32941 bnj1514 32943 bnj1501 32947 dfrdg2 33677 heibor1lem 35894 fnsnbt 40134 aomclem6 40800 ntrclsfv1 41554 ntrneifv1 41578 fnresdmss 42593 fnresfnco 44422 fnfocofob 44458 fnbrafvb 44533 uniimaprimaeqfv 44722 elsetpreimafvssdm 44726 imasetpreimafvbijlemfo 44745 fnxpdmdm 45210 plusfreseq 45214 |
Copyright terms: Public domain | W3C validator |