Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fndm | Structured version Visualization version GIF version |
Description: The domain of a function. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
fndm | ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fn 6383 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
2 | 1 | simprbi 500 | 1 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 dom cdm 5551 Fun wfun 6374 Fn wfn 6375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-fn 6383 |
This theorem is referenced by: fndmi 6482 fndmd 6483 funfni 6484 fndmu 6485 fnbr 6486 fncofn 6493 fnco 6494 fncoOLD 6495 fnresdm 6496 fnresdisj 6497 fnssresb 6499 fn0 6509 fnimadisj 6510 fnimaeq0 6511 fdmOLD 6555 f1dmOLD 6620 f1odm 6665 fvelimab 6784 fvun1 6802 eqfnfv2 6853 fndmdif 6862 fneqeql2 6867 elpreima 6878 fsn2 6951 fnprb 7024 fntpb 7025 fconst3 7029 fconst4 7030 fnfvima 7049 fnunirn 7066 dff13 7067 nvof1o 7091 f1eqcocnvOLD 7112 oprssov 7377 fnexALT 7724 dmmpogaOLD 7844 curry1 7872 curry1val 7873 curry2 7875 curry2val 7877 fparlem3 7882 fparlem4 7883 offsplitfpar 7888 suppvalfng 7910 suppvalfn 7911 suppfnss 7931 fnsuppres 7933 tposfo2 7991 frrlem3 8029 frrlem4 8030 wfrlem3 8056 wfrlem4 8058 wfrdmcl 8063 wfrlem12 8066 smodm2 8092 smoel2 8100 tfrlem8 8120 tfrlem9 8121 tfrlem9a 8122 tfrlem13 8126 tz7.44-3 8144 rdglim 8162 frsucmptn 8174 oaabs2 8374 omabs 8376 ixpprc 8600 undifixp 8615 bren 8636 brenOLD 8637 fndmeng 8712 inf0 9236 r1lim 9388 jech9.3 9430 ssrankr1 9451 rankuni 9479 dfac3 9735 cfsmolem 9884 fin23lem31 9957 itunitc1 10034 ituniiun 10036 fnct 10151 cfpwsdom 10198 grur1 10434 genpdm 10616 fsuppmapnn0fiublem 13563 fsuppmapnn0fiub 13564 hashfn 13942 cshimadifsn 14394 cshimadifsn0 14395 shftfn 14636 rlimi2 15075 phimullem 16332 restsspw 16936 prdsdsval 16983 fnpr2ob 17063 sscpwex 17320 sscfn1 17322 sscfn2 17323 isssc 17325 funcres 17402 xpcbas 17685 xpchomfval 17686 gsumpropd2lem 18151 psgndmsubg 18894 dsmmbas2 20699 dsmmelbas 20701 islindf4 20800 restbas 22055 ptval 22467 kqcldsat 22630 kqnrmlem1 22640 kqnrmlem2 22641 hmphtop 22675 ustn0 23118 uniiccdif 24475 cpncn 24833 cpnres 24834 ulmf2 25276 tglngne 26641 uhgrn0 27158 upgrfn 27178 upgrex 27183 umgrfn 27190 fnunres1 30664 fcoinver 30665 nfpconfp 30686 mdetpmtr1 31487 coinflipspace 32159 bnj945 32466 bnj545 32588 bnj548 32590 bnj570 32598 bnj900 32622 bnj929 32629 bnj983 32644 bnj1018g 32656 bnj1018 32657 bnj1110 32675 bnj1145 32686 bnj1245 32707 bnj1253 32710 bnj1286 32712 bnj1280 32713 bnj1296 32714 bnj1311 32717 bnj1450 32743 bnj1498 32754 bnj1514 32756 bnj1501 32760 dfrdg2 33490 heibor1lem 35704 fnsnbt 39921 aomclem6 40587 ntrclsfv1 41342 ntrneifv1 41366 fnresdmss 42377 fnresfnco 44207 fnfocofob 44243 fnbrafvb 44318 uniimaprimaeqfv 44507 elsetpreimafvssdm 44511 imasetpreimafvbijlemfo 44530 fnxpdmdm 44995 plusfreseq 44999 |
Copyright terms: Public domain | W3C validator |