| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fndm | Structured version Visualization version GIF version | ||
| Description: The domain of a function. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fndm | ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fn 6502 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 dom cdm 5631 Fun wfun 6493 Fn wfn 6494 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6502 |
| This theorem is referenced by: fndmi 6604 fndmd 6605 funfni 6606 fndmu 6607 fnbr 6608 fnunres1 6612 fncofn 6617 fnco 6618 fnresdm 6619 fnresdisj 6620 fnssresb 6622 fn0 6631 fnimadisj 6632 fnimaeq0 6633 f1odm 6786 fvelimab 6915 fvun1 6934 eqfnfv2 6986 fndmdif 6996 fneqeql2 7001 elpreima 7012 fsn2 7090 fnsnbg 7120 fnprb 7164 fntpb 7165 fconst3 7169 fconst4 7170 fnfvima 7189 ralima 7193 fnunirn 7210 dff13 7211 nvof1o 7237 oprssov 7538 fnexALT 7909 curry1 8060 curry1val 8061 curry2 8063 curry2val 8065 fparlem3 8070 fparlem4 8071 offsplitfpar 8075 suppvalfng 8123 suppvalfn 8124 suppfnss 8145 fnsuppres 8147 tposfo2 8205 frrlem3 8244 frrlem4 8245 smodm2 8301 smoel2 8309 tfrlem8 8329 tfrlem9 8330 tfrlem9a 8331 tfrlem13 8335 tz7.44-3 8353 rdglim 8371 frsucmptn 8384 oaabs2 8590 omabs 8592 ixpprc 8869 undifixp 8884 bren 8905 fndmeng 8983 inf0 9550 r1lim 9701 jech9.3 9743 ssrankr1 9764 rankuni 9792 dfac3 10050 cfsmolem 10199 fin23lem31 10272 itunitc1 10349 ituniiun 10351 fnct 10466 cfpwsdom 10513 grur1 10749 genpdm 10931 fsuppmapnn0fiublem 13931 fsuppmapnn0fiub 13932 hashfn 14316 cshimadifsn 14771 cshimadifsn0 14772 shftfn 15015 rlimi2 15456 phimullem 16725 restsspw 17370 prdsdsval 17417 fnpr2ob 17497 sscpwex 17757 sscfn1 17759 sscfn2 17760 isssc 17762 funcres 17838 xpcbas 18119 xpchomfval 18120 gsumpropd2lem 18588 psgndmsubg 19416 dsmmbas2 21679 dsmmelbas 21681 islindf4 21780 restbas 23078 ptval 23490 kqcldsat 23653 kqnrmlem1 23663 kqnrmlem2 23664 hmphtop 23698 ustn0 24141 uniiccdif 25512 cpncn 25871 cpnres 25872 ulmf2 26326 tglngne 28530 uhgrn0 29047 upgrfn 29067 upgrex 29072 umgrfn 29079 fcoinver 32583 nfpconfp 32606 opprabs 33446 mdetpmtr1 33806 coinflipspace 34465 bnj945 34756 bnj545 34878 bnj548 34880 bnj570 34888 bnj900 34912 bnj929 34919 bnj983 34934 bnj1018g 34946 bnj1018 34947 bnj1110 34965 bnj1145 34976 bnj1245 34997 bnj1253 35000 bnj1286 35002 bnj1280 35003 bnj1296 35004 bnj1311 35007 bnj1450 35033 bnj1498 35044 bnj1514 35046 bnj1501 35050 dfrdg2 35776 heibor1lem 37796 aks6d1c2lem4 42108 eqresfnbd 42213 aomclem6 43041 tfsconcatun 43319 tfsconcatb0 43326 tfsconcat0i 43327 tfsconcat0b 43328 tfsconcatrev 43330 tfsnfin 43334 ntrclsfv1 44037 ntrneifv1 44061 fnresdmss 45155 dmmptif 45253 fnresfnco 47035 fnfocofob 47073 fnbrafvb 47148 uniimaprimaeqfv 47376 elsetpreimafvssdm 47380 imasetpreimafvbijlemfo 47399 fnxpdmdm 48141 plusfreseq 48145 dmdm 49035 |
| Copyright terms: Public domain | W3C validator |