| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fndm | Structured version Visualization version GIF version | ||
| Description: The domain of a function. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fndm | ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fn 6514 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 dom cdm 5638 Fun wfun 6505 Fn wfn 6506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6514 |
| This theorem is referenced by: fndmi 6622 fndmd 6623 funfni 6624 fndmu 6625 fnbr 6626 fnunres1 6630 fncofn 6635 fnco 6636 fnresdm 6637 fnresdisj 6638 fnssresb 6640 fn0 6649 fnimadisj 6650 fnimaeq0 6651 f1odm 6804 fvelimab 6933 fvun1 6952 eqfnfv2 7004 fndmdif 7014 fneqeql2 7019 elpreima 7030 fsn2 7108 fnsnbg 7138 fnprb 7182 fntpb 7183 fconst3 7187 fconst4 7188 fnfvima 7207 ralima 7211 fnunirn 7228 dff13 7229 nvof1o 7255 oprssov 7558 fnexALT 7929 curry1 8083 curry1val 8084 curry2 8086 curry2val 8088 fparlem3 8093 fparlem4 8094 offsplitfpar 8098 suppvalfng 8146 suppvalfn 8147 suppfnss 8168 fnsuppres 8170 tposfo2 8228 frrlem3 8267 frrlem4 8268 smodm2 8324 smoel2 8332 tfrlem8 8352 tfrlem9 8353 tfrlem9a 8354 tfrlem13 8358 tz7.44-3 8376 rdglim 8394 frsucmptn 8407 oaabs2 8613 omabs 8615 ixpprc 8892 undifixp 8907 bren 8928 fndmeng 9006 inf0 9574 r1lim 9725 jech9.3 9767 ssrankr1 9788 rankuni 9816 dfac3 10074 cfsmolem 10223 fin23lem31 10296 itunitc1 10373 ituniiun 10375 fnct 10490 cfpwsdom 10537 grur1 10773 genpdm 10955 fsuppmapnn0fiublem 13955 fsuppmapnn0fiub 13956 hashfn 14340 cshimadifsn 14795 cshimadifsn0 14796 shftfn 15039 rlimi2 15480 phimullem 16749 restsspw 17394 prdsdsval 17441 fnpr2ob 17521 sscpwex 17777 sscfn1 17779 sscfn2 17780 isssc 17782 funcres 17858 xpcbas 18139 xpchomfval 18140 gsumpropd2lem 18606 psgndmsubg 19432 dsmmbas2 21646 dsmmelbas 21648 islindf4 21747 restbas 23045 ptval 23457 kqcldsat 23620 kqnrmlem1 23630 kqnrmlem2 23631 hmphtop 23665 ustn0 24108 uniiccdif 25479 cpncn 25838 cpnres 25839 ulmf2 26293 tglngne 28477 uhgrn0 28994 upgrfn 29014 upgrex 29019 umgrfn 29026 fcoinver 32533 nfpconfp 32556 opprabs 33453 mdetpmtr1 33813 coinflipspace 34472 bnj945 34763 bnj545 34885 bnj548 34887 bnj570 34895 bnj900 34919 bnj929 34926 bnj983 34941 bnj1018g 34953 bnj1018 34954 bnj1110 34972 bnj1145 34983 bnj1245 35004 bnj1253 35007 bnj1286 35009 bnj1280 35010 bnj1296 35011 bnj1311 35014 bnj1450 35040 bnj1498 35051 bnj1514 35053 bnj1501 35057 dfrdg2 35783 heibor1lem 37803 aks6d1c2lem4 42115 eqresfnbd 42220 aomclem6 43048 tfsconcatun 43326 tfsconcatb0 43333 tfsconcat0i 43334 tfsconcat0b 43335 tfsconcatrev 43337 tfsnfin 43341 ntrclsfv1 44044 ntrneifv1 44068 fnresdmss 45162 dmmptif 45260 fnresfnco 47042 fnfocofob 47080 fnbrafvb 47155 uniimaprimaeqfv 47383 elsetpreimafvssdm 47387 imasetpreimafvbijlemfo 47406 fnxpdmdm 48148 plusfreseq 48152 dmdm 49042 |
| Copyright terms: Public domain | W3C validator |