Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fndm | Structured version Visualization version GIF version |
Description: The domain of a function. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
fndm | ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fn 6440 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
2 | 1 | simprbi 497 | 1 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 dom cdm 5590 Fun wfun 6431 Fn wfn 6432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-fn 6440 |
This theorem is referenced by: fndmi 6546 fndmd 6547 funfni 6548 fndmu 6549 fnbr 6550 fncofn 6557 fnco 6558 fncoOLD 6559 fnresdm 6560 fnresdisj 6561 fnssresb 6563 fn0 6573 fnimadisj 6574 fnimaeq0 6575 fdmOLD 6619 f1dmOLD 6684 f1odm 6729 fvelimab 6850 fvun1 6868 eqfnfv2 6919 fndmdif 6928 fneqeql2 6933 elpreima 6944 fsn2 7017 fnprb 7093 fntpb 7094 fconst3 7098 fconst4 7099 fnfvima 7118 fnunirn 7136 dff13 7137 nvof1o 7161 f1eqcocnvOLD 7183 oprssov 7450 fnexALT 7802 dmmpogaOLD 7923 curry1 7953 curry1val 7954 curry2 7956 curry2val 7958 fparlem3 7963 fparlem4 7964 offsplitfpar 7969 suppvalfng 7993 suppvalfn 7994 suppfnss 8014 fnsuppres 8016 tposfo2 8074 frrlem3 8113 frrlem4 8114 wfrlem3OLD 8150 wfrlem4OLD 8152 wfrdmclOLD 8157 wfrlem12OLD 8160 smodm2 8195 smoel2 8203 tfrlem8 8224 tfrlem9 8225 tfrlem9a 8226 tfrlem13 8230 tz7.44-3 8248 rdglim 8266 frsucmptn 8279 oaabs2 8488 omabs 8490 ixpprc 8716 undifixp 8731 bren 8752 brenOLD 8753 fndmeng 8834 inf0 9388 r1lim 9539 jech9.3 9581 ssrankr1 9602 rankuni 9630 dfac3 9886 cfsmolem 10035 fin23lem31 10108 itunitc1 10185 ituniiun 10187 fnct 10302 cfpwsdom 10349 grur1 10585 genpdm 10767 fsuppmapnn0fiublem 13719 fsuppmapnn0fiub 13720 hashfn 14099 cshimadifsn 14551 cshimadifsn0 14552 shftfn 14793 rlimi2 15232 phimullem 16489 restsspw 17151 prdsdsval 17198 fnpr2ob 17278 sscpwex 17536 sscfn1 17538 sscfn2 17539 isssc 17541 funcres 17620 xpcbas 17904 xpchomfval 17905 gsumpropd2lem 18372 psgndmsubg 19119 dsmmbas2 20953 dsmmelbas 20955 islindf4 21054 restbas 22318 ptval 22730 kqcldsat 22893 kqnrmlem1 22903 kqnrmlem2 22904 hmphtop 22938 ustn0 23381 uniiccdif 24751 cpncn 25109 cpnres 25110 ulmf2 25552 tglngne 26920 uhgrn0 27446 upgrfn 27466 upgrex 27471 umgrfn 27478 fnunres1 30954 fcoinver 30955 nfpconfp 30976 mdetpmtr1 31782 coinflipspace 32456 bnj945 32762 bnj545 32884 bnj548 32886 bnj570 32894 bnj900 32918 bnj929 32925 bnj983 32940 bnj1018g 32952 bnj1018 32953 bnj1110 32971 bnj1145 32982 bnj1245 33003 bnj1253 33006 bnj1286 33008 bnj1280 33009 bnj1296 33010 bnj1311 33013 bnj1450 33039 bnj1498 33050 bnj1514 33052 bnj1501 33056 dfrdg2 33780 heibor1lem 35976 fnsnbt 40215 aomclem6 40891 ntrclsfv1 41672 ntrneifv1 41696 fnresdmss 42711 fnresfnco 44546 fnfocofob 44582 fnbrafvb 44657 uniimaprimaeqfv 44845 elsetpreimafvssdm 44849 imasetpreimafvbijlemfo 44868 fnxpdmdm 45333 plusfreseq 45337 |
Copyright terms: Public domain | W3C validator |