| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fndm | Structured version Visualization version GIF version | ||
| Description: The domain of a function. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fndm | ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fn 6484 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 dom cdm 5614 Fun wfun 6475 Fn wfn 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6484 |
| This theorem is referenced by: fndmi 6585 fndmd 6586 funfni 6587 fndmu 6588 fnbr 6589 fnunres1 6593 fncofn 6598 fnco 6599 fnresdm 6600 fnresdisj 6601 fnssresb 6603 fn0 6612 fnimadisj 6613 fnimaeq0 6614 f1odm 6767 fvelimab 6894 fvun1 6913 eqfnfv2 6965 fndmdif 6975 fneqeql2 6980 elpreima 6991 fsn2 7069 fnsnbg 7098 fnprb 7142 fntpb 7143 fconst3 7147 fconst4 7148 fnfvima 7167 ralima 7171 fnunirn 7187 dff13 7188 nvof1o 7214 oprssov 7515 fnexALT 7883 curry1 8034 curry1val 8035 curry2 8037 curry2val 8039 fparlem3 8044 fparlem4 8045 offsplitfpar 8049 suppvalfng 8097 suppvalfn 8098 suppfnss 8119 fnsuppres 8121 tposfo2 8179 frrlem3 8218 frrlem4 8219 smodm2 8275 smoel2 8283 tfrlem8 8303 tfrlem9 8304 tfrlem9a 8305 tfrlem13 8309 tz7.44-3 8327 rdglim 8345 frsucmptn 8358 oaabs2 8564 omabs 8566 ixpprc 8843 undifixp 8858 bren 8879 fndmeng 8957 inf0 9511 r1lim 9665 jech9.3 9707 ssrankr1 9728 rankuni 9756 dfac3 10012 cfsmolem 10161 fin23lem31 10234 itunitc1 10311 ituniiun 10313 fnct 10428 cfpwsdom 10475 grur1 10711 genpdm 10893 fsuppmapnn0fiublem 13897 fsuppmapnn0fiub 13898 hashfn 14282 cshimadifsn 14736 cshimadifsn0 14737 shftfn 14980 rlimi2 15421 phimullem 16690 restsspw 17335 prdsdsval 17382 fnpr2ob 17462 sscpwex 17722 sscfn1 17724 sscfn2 17725 isssc 17727 funcres 17803 xpcbas 18084 xpchomfval 18085 gsumpropd2lem 18587 psgndmsubg 19414 dsmmbas2 21674 dsmmelbas 21676 islindf4 21775 restbas 23073 ptval 23485 kqcldsat 23648 kqnrmlem1 23658 kqnrmlem2 23659 hmphtop 23693 ustn0 24136 uniiccdif 25506 cpncn 25865 cpnres 25866 ulmf2 26320 tglngne 28528 uhgrn0 29045 upgrfn 29065 upgrex 29070 umgrfn 29077 fcoinver 32584 nfpconfp 32614 opprabs 33447 mdetpmtr1 33836 coinflipspace 34494 bnj945 34785 bnj545 34907 bnj548 34909 bnj570 34917 bnj900 34941 bnj929 34948 bnj983 34963 bnj1018g 34975 bnj1018 34976 bnj1110 34994 bnj1145 35005 bnj1245 35026 bnj1253 35029 bnj1286 35031 bnj1280 35032 bnj1296 35033 bnj1311 35036 bnj1450 35062 bnj1498 35073 bnj1514 35075 bnj1501 35079 dfrdg2 35837 heibor1lem 37857 aks6d1c2lem4 42168 eqresfnbd 42273 aomclem6 43100 tfsconcatun 43378 tfsconcatb0 43385 tfsconcat0i 43386 tfsconcat0b 43387 tfsconcatrev 43389 tfsnfin 43393 ntrclsfv1 44096 ntrneifv1 44120 fnresdmss 45213 dmmptif 45311 fnresfnco 47080 fnfocofob 47118 fnbrafvb 47193 uniimaprimaeqfv 47421 elsetpreimafvssdm 47425 imasetpreimafvbijlemfo 47444 fnxpdmdm 48199 plusfreseq 48203 dmdm 49093 |
| Copyright terms: Public domain | W3C validator |