| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fndm | Structured version Visualization version GIF version | ||
| Description: The domain of a function. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fndm | ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fn 6485 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 dom cdm 5619 Fun wfun 6476 Fn wfn 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6485 |
| This theorem is referenced by: fndmi 6586 fndmd 6587 funfni 6588 fndmu 6589 fnbr 6590 fnunres1 6594 fncofn 6599 fnco 6600 fnresdm 6601 fnresdisj 6602 fnssresb 6604 fn0 6613 fnimadisj 6614 fnimaeq0 6615 f1odm 6768 fvelimab 6895 fvun1 6914 eqfnfv2 6966 fndmdif 6976 fneqeql2 6981 elpreima 6992 fsn2 7070 fnsnbg 7100 fnprb 7144 fntpb 7145 fconst3 7149 fconst4 7150 fnfvima 7169 ralima 7173 fnunirn 7190 dff13 7191 nvof1o 7217 oprssov 7518 fnexALT 7886 curry1 8037 curry1val 8038 curry2 8040 curry2val 8042 fparlem3 8047 fparlem4 8048 offsplitfpar 8052 suppvalfng 8100 suppvalfn 8101 suppfnss 8122 fnsuppres 8124 tposfo2 8182 frrlem3 8221 frrlem4 8222 smodm2 8278 smoel2 8286 tfrlem8 8306 tfrlem9 8307 tfrlem9a 8308 tfrlem13 8312 tz7.44-3 8330 rdglim 8348 frsucmptn 8361 oaabs2 8567 omabs 8569 ixpprc 8846 undifixp 8861 bren 8882 fndmeng 8960 inf0 9517 r1lim 9668 jech9.3 9710 ssrankr1 9731 rankuni 9759 dfac3 10015 cfsmolem 10164 fin23lem31 10237 itunitc1 10314 ituniiun 10316 fnct 10431 cfpwsdom 10478 grur1 10714 genpdm 10896 fsuppmapnn0fiublem 13897 fsuppmapnn0fiub 13898 hashfn 14282 cshimadifsn 14736 cshimadifsn0 14737 shftfn 14980 rlimi2 15421 phimullem 16690 restsspw 17335 prdsdsval 17382 fnpr2ob 17462 sscpwex 17722 sscfn1 17724 sscfn2 17725 isssc 17727 funcres 17803 xpcbas 18084 xpchomfval 18085 gsumpropd2lem 18553 psgndmsubg 19381 dsmmbas2 21644 dsmmelbas 21646 islindf4 21745 restbas 23043 ptval 23455 kqcldsat 23618 kqnrmlem1 23628 kqnrmlem2 23629 hmphtop 23663 ustn0 24106 uniiccdif 25477 cpncn 25836 cpnres 25837 ulmf2 26291 tglngne 28495 uhgrn0 29012 upgrfn 29032 upgrex 29037 umgrfn 29044 fcoinver 32548 nfpconfp 32575 opprabs 33419 mdetpmtr1 33790 coinflipspace 34449 bnj945 34740 bnj545 34862 bnj548 34864 bnj570 34872 bnj900 34896 bnj929 34903 bnj983 34918 bnj1018g 34930 bnj1018 34931 bnj1110 34949 bnj1145 34960 bnj1245 34981 bnj1253 34984 bnj1286 34986 bnj1280 34987 bnj1296 34988 bnj1311 34991 bnj1450 35017 bnj1498 35028 bnj1514 35030 bnj1501 35034 dfrdg2 35769 heibor1lem 37789 aks6d1c2lem4 42100 eqresfnbd 42205 aomclem6 43032 tfsconcatun 43310 tfsconcatb0 43317 tfsconcat0i 43318 tfsconcat0b 43319 tfsconcatrev 43321 tfsnfin 43325 ntrclsfv1 44028 ntrneifv1 44052 fnresdmss 45146 dmmptif 45244 fnresfnco 47025 fnfocofob 47063 fnbrafvb 47138 uniimaprimaeqfv 47366 elsetpreimafvssdm 47370 imasetpreimafvbijlemfo 47389 fnxpdmdm 48144 plusfreseq 48148 dmdm 49038 |
| Copyright terms: Public domain | W3C validator |