| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fndm | Structured version Visualization version GIF version | ||
| Description: The domain of a function. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fndm | ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fn 6502 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 dom cdm 5631 Fun wfun 6493 Fn wfn 6494 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6502 |
| This theorem is referenced by: fndmi 6604 fndmd 6605 funfni 6606 fndmu 6607 fnbr 6608 fnunres1 6612 fncofn 6617 fnco 6618 fnresdm 6619 fnresdisj 6620 fnssresb 6622 fn0 6631 fnimadisj 6632 fnimaeq0 6633 f1odm 6786 fvelimab 6915 fvun1 6934 eqfnfv2 6986 fndmdif 6996 fneqeql2 7001 elpreima 7012 fsn2 7090 fnsnbg 7120 fnprb 7164 fntpb 7165 fconst3 7169 fconst4 7170 fnfvima 7189 ralima 7193 fnunirn 7210 dff13 7211 nvof1o 7237 oprssov 7538 fnexALT 7909 curry1 8060 curry1val 8061 curry2 8063 curry2val 8065 fparlem3 8070 fparlem4 8071 offsplitfpar 8075 suppvalfng 8123 suppvalfn 8124 suppfnss 8145 fnsuppres 8147 tposfo2 8205 frrlem3 8244 frrlem4 8245 smodm2 8301 smoel2 8309 tfrlem8 8329 tfrlem9 8330 tfrlem9a 8331 tfrlem13 8335 tz7.44-3 8353 rdglim 8371 frsucmptn 8384 oaabs2 8590 omabs 8592 ixpprc 8869 undifixp 8884 bren 8905 fndmeng 8983 inf0 9550 r1lim 9701 jech9.3 9743 ssrankr1 9764 rankuni 9792 dfac3 10050 cfsmolem 10199 fin23lem31 10272 itunitc1 10349 ituniiun 10351 fnct 10466 cfpwsdom 10513 grur1 10749 genpdm 10931 fsuppmapnn0fiublem 13931 fsuppmapnn0fiub 13932 hashfn 14316 cshimadifsn 14771 cshimadifsn0 14772 shftfn 15015 rlimi2 15456 phimullem 16725 restsspw 17370 prdsdsval 17417 fnpr2ob 17497 sscpwex 17753 sscfn1 17755 sscfn2 17756 isssc 17758 funcres 17834 xpcbas 18115 xpchomfval 18116 gsumpropd2lem 18582 psgndmsubg 19408 dsmmbas2 21622 dsmmelbas 21624 islindf4 21723 restbas 23021 ptval 23433 kqcldsat 23596 kqnrmlem1 23606 kqnrmlem2 23607 hmphtop 23641 ustn0 24084 uniiccdif 25455 cpncn 25814 cpnres 25815 ulmf2 26269 tglngne 28453 uhgrn0 28970 upgrfn 28990 upgrex 28995 umgrfn 29002 fcoinver 32506 nfpconfp 32529 opprabs 33426 mdetpmtr1 33786 coinflipspace 34445 bnj945 34736 bnj545 34858 bnj548 34860 bnj570 34868 bnj900 34892 bnj929 34899 bnj983 34914 bnj1018g 34926 bnj1018 34927 bnj1110 34945 bnj1145 34956 bnj1245 34977 bnj1253 34980 bnj1286 34982 bnj1280 34983 bnj1296 34984 bnj1311 34987 bnj1450 35013 bnj1498 35024 bnj1514 35026 bnj1501 35030 dfrdg2 35756 heibor1lem 37776 aks6d1c2lem4 42088 eqresfnbd 42193 aomclem6 43021 tfsconcatun 43299 tfsconcatb0 43306 tfsconcat0i 43307 tfsconcat0b 43308 tfsconcatrev 43310 tfsnfin 43314 ntrclsfv1 44017 ntrneifv1 44041 fnresdmss 45135 dmmptif 45233 fnresfnco 47015 fnfocofob 47053 fnbrafvb 47128 uniimaprimaeqfv 47356 elsetpreimafvssdm 47360 imasetpreimafvbijlemfo 47379 fnxpdmdm 48121 plusfreseq 48125 dmdm 49015 |
| Copyright terms: Public domain | W3C validator |