Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege13 Structured version   Visualization version   GIF version

Theorem frege13 41319
Description: A closed form of com3r 87. Proposition 13 of [Frege1879] p. 37. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege13 ((𝜑 → (𝜓 → (𝜒𝜃))) → (𝜒 → (𝜑 → (𝜓𝜃))))

Proof of Theorem frege13
StepHypRef Expression
1 frege12 41310 . 2 ((𝜑 → (𝜓 → (𝜒𝜃))) → (𝜑 → (𝜒 → (𝜓𝜃))))
2 frege12 41310 . 2 (((𝜑 → (𝜓 → (𝜒𝜃))) → (𝜑 → (𝜒 → (𝜓𝜃)))) → ((𝜑 → (𝜓 → (𝜒𝜃))) → (𝜒 → (𝜑 → (𝜓𝜃)))))
31, 2ax-mp 5 1 ((𝜑 → (𝜓 → (𝜒𝜃))) → (𝜒 → (𝜑 → (𝜓𝜃))))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 41287  ax-frege2 41288  ax-frege8 41306
This theorem is referenced by:  frege14  41320
  Copyright terms: Public domain W3C validator