Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege12 Structured version   Visualization version   GIF version

Theorem frege12 41421
Description: A closed form of com23 86. Proposition 12 of [Frege1879] p. 37. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege12 ((𝜑 → (𝜓 → (𝜒𝜃))) → (𝜑 → (𝜒 → (𝜓𝜃))))

Proof of Theorem frege12
StepHypRef Expression
1 ax-frege8 41417 . 2 ((𝜓 → (𝜒𝜃)) → (𝜒 → (𝜓𝜃)))
2 frege5 41408 . 2 (((𝜓 → (𝜒𝜃)) → (𝜒 → (𝜓𝜃))) → ((𝜑 → (𝜓 → (𝜒𝜃))) → (𝜑 → (𝜒 → (𝜓𝜃)))))
31, 2ax-mp 5 1 ((𝜑 → (𝜓 → (𝜒𝜃))) → (𝜑 → (𝜒 → (𝜓𝜃))))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 41398  ax-frege2 41399  ax-frege8 41417
This theorem is referenced by:  frege24  41423  frege16  41424  frege13  41430  frege15  41434  frege35  41446  frege49  41461  frege60a  41486  frege60b  41513  frege60c  41531  frege85  41556  frege127  41598
  Copyright terms: Public domain W3C validator