Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege12 Structured version   Visualization version   GIF version

Theorem frege12 43802
Description: A closed form of com23 86. Proposition 12 of [Frege1879] p. 37. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege12 ((𝜑 → (𝜓 → (𝜒𝜃))) → (𝜑 → (𝜒 → (𝜓𝜃))))

Proof of Theorem frege12
StepHypRef Expression
1 ax-frege8 43798 . 2 ((𝜓 → (𝜒𝜃)) → (𝜒 → (𝜓𝜃)))
2 frege5 43789 . 2 (((𝜓 → (𝜒𝜃)) → (𝜒 → (𝜓𝜃))) → ((𝜑 → (𝜓 → (𝜒𝜃))) → (𝜑 → (𝜒 → (𝜓𝜃)))))
31, 2ax-mp 5 1 ((𝜑 → (𝜓 → (𝜒𝜃))) → (𝜑 → (𝜒 → (𝜓𝜃))))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 43779  ax-frege2 43780  ax-frege8 43798
This theorem is referenced by:  frege24  43804  frege16  43805  frege13  43811  frege15  43815  frege35  43827  frege49  43842  frege60a  43867  frege60b  43894  frege60c  43912  frege85  43937  frege127  43979
  Copyright terms: Public domain W3C validator