Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege17 Structured version   Visualization version   GIF version

Theorem frege17 41318
Description: A closed form of com3l 89. Proposition 17 of [Frege1879] p. 39. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege17 ((𝜑 → (𝜓 → (𝜒𝜃))) → (𝜓 → (𝜒 → (𝜑𝜃))))

Proof of Theorem frege17
StepHypRef Expression
1 ax-frege8 41306 . 2 ((𝜑 → (𝜓 → (𝜒𝜃))) → (𝜓 → (𝜑 → (𝜒𝜃))))
2 frege16 41313 . 2 (((𝜑 → (𝜓 → (𝜒𝜃))) → (𝜓 → (𝜑 → (𝜒𝜃)))) → ((𝜑 → (𝜓 → (𝜒𝜃))) → (𝜓 → (𝜒 → (𝜑𝜃)))))
31, 2ax-mp 5 1 ((𝜑 → (𝜓 → (𝜒𝜃))) → (𝜓 → (𝜒 → (𝜑𝜃))))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 41287  ax-frege2 41288  ax-frege8 41306
This theorem is referenced by:  frege50  41351  frege78  41438
  Copyright terms: Public domain W3C validator