| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege14 | Structured version Visualization version GIF version | ||
| Description: Closed form of a deduction based on com3r 87. Proposition 14 of [Frege1879] p. 37. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege14 | ⊢ ((𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) → (𝜑 → (𝜃 → (𝜓 → (𝜒 → 𝜏))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege13 43813 | . 2 ⊢ ((𝜓 → (𝜒 → (𝜃 → 𝜏))) → (𝜃 → (𝜓 → (𝜒 → 𝜏)))) | |
| 2 | frege5 43791 | . 2 ⊢ (((𝜓 → (𝜒 → (𝜃 → 𝜏))) → (𝜃 → (𝜓 → (𝜒 → 𝜏)))) → ((𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) → (𝜑 → (𝜃 → (𝜓 → (𝜒 → 𝜏)))))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) → (𝜑 → (𝜃 → (𝜓 → (𝜒 → 𝜏))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-frege1 43781 ax-frege2 43782 ax-frege8 43800 |
| This theorem is referenced by: frege15 43817 |
| Copyright terms: Public domain | W3C validator |