Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege19 Structured version   Visualization version   GIF version

Theorem frege19 41321
Description: A closed form of syl6 35. Proposition 19 of [Frege1879] p. 39. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege19 ((𝜑 → (𝜓𝜒)) → ((𝜒𝜃) → (𝜑 → (𝜓𝜃))))

Proof of Theorem frege19
StepHypRef Expression
1 frege9 41309 . 2 ((𝜓𝜒) → ((𝜒𝜃) → (𝜓𝜃)))
2 frege18 41315 . 2 (((𝜓𝜒) → ((𝜒𝜃) → (𝜓𝜃))) → ((𝜑 → (𝜓𝜒)) → ((𝜒𝜃) → (𝜑 → (𝜓𝜃)))))
31, 2ax-mp 5 1 ((𝜑 → (𝜓𝜒)) → ((𝜒𝜃) → (𝜑 → (𝜓𝜃))))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 41287  ax-frege2 41288  ax-frege8 41306
This theorem is referenced by:  frege21  41324  frege20  41325  frege71  41431  frege86  41446  frege103  41463  frege119  41479  frege123  41483
  Copyright terms: Public domain W3C validator