Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege19 Structured version   Visualization version   GIF version

Theorem frege19 43786
Description: A closed form of syl6 35. Proposition 19 of [Frege1879] p. 39. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege19 ((𝜑 → (𝜓𝜒)) → ((𝜒𝜃) → (𝜑 → (𝜓𝜃))))

Proof of Theorem frege19
StepHypRef Expression
1 frege9 43774 . 2 ((𝜓𝜒) → ((𝜒𝜃) → (𝜓𝜃)))
2 frege18 43780 . 2 (((𝜓𝜒) → ((𝜒𝜃) → (𝜓𝜃))) → ((𝜑 → (𝜓𝜒)) → ((𝜒𝜃) → (𝜑 → (𝜓𝜃)))))
31, 2ax-mp 5 1 ((𝜑 → (𝜓𝜒)) → ((𝜒𝜃) → (𝜑 → (𝜓𝜃))))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 43752  ax-frege2 43753  ax-frege8 43771
This theorem is referenced by:  frege21  43789  frege20  43790  frege71  43896  frege86  43911  frege103  43928  frege119  43944  frege123  43948
  Copyright terms: Public domain W3C validator