Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege50 Structured version   Visualization version   GIF version

Theorem frege50 43287
Description: Closed form of jaoi 855. Proposition 50 of [Frege1879] p. 49. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege50 ((𝜑𝜓) → ((𝜒𝜓) → ((¬ 𝜑𝜒) → 𝜓)))

Proof of Theorem frege50
StepHypRef Expression
1 frege49 43286 . 2 ((¬ 𝜑𝜒) → ((𝜑𝜓) → ((𝜒𝜓) → 𝜓)))
2 frege17 43254 . 2 (((¬ 𝜑𝜒) → ((𝜑𝜓) → ((𝜒𝜓) → 𝜓))) → ((𝜑𝜓) → ((𝜒𝜓) → ((¬ 𝜑𝜒) → 𝜓))))
31, 2ax-mp 5 1 ((𝜑𝜓) → ((𝜒𝜓) → ((¬ 𝜑𝜒) → 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 43223  ax-frege2 43224  ax-frege8 43242  ax-frege28 43263  ax-frege31 43267  ax-frege41 43278
This theorem is referenced by:  frege51  43288
  Copyright terms: Public domain W3C validator