|   | Mathbox for Richard Penner | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege30 | Structured version Visualization version GIF version | ||
| Description: Commuted, closed form of con3d 152. Proposition 30 of [Frege1879] p. 44. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) | 
| Ref | Expression | 
|---|---|
| frege30 | ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (¬ 𝜒 → ¬ 𝜑))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | frege29 43849 | . 2 ⊢ ((𝜓 → (𝜑 → 𝜒)) → (𝜓 → (¬ 𝜒 → ¬ 𝜑))) | |
| 2 | frege10 43838 | . 2 ⊢ (((𝜓 → (𝜑 → 𝜒)) → (𝜓 → (¬ 𝜒 → ¬ 𝜑))) → ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (¬ 𝜒 → ¬ 𝜑)))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (¬ 𝜒 → ¬ 𝜑))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 | 
| This theorem was proved from axioms: ax-mp 5 ax-frege1 43808 ax-frege2 43809 ax-frege8 43827 ax-frege28 43848 | 
| This theorem is referenced by: frege59a 43895 frege59b 43922 frege59c 43940 | 
| Copyright terms: Public domain | W3C validator |