Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege32 | Structured version Visualization version GIF version |
Description: Deduce con1 146 from con3 153. Proposition 32 of [Frege1879] p. 44. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege32 | ⊢ (((¬ 𝜑 → 𝜓) → (¬ 𝜓 → ¬ ¬ 𝜑)) → ((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-frege31 41331 | . 2 ⊢ (¬ ¬ 𝜑 → 𝜑) | |
2 | frege7 41305 | . 2 ⊢ ((¬ ¬ 𝜑 → 𝜑) → (((¬ 𝜑 → 𝜓) → (¬ 𝜓 → ¬ ¬ 𝜑)) → ((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑)))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (((¬ 𝜑 → 𝜓) → (¬ 𝜓 → ¬ ¬ 𝜑)) → ((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-frege1 41287 ax-frege2 41288 ax-frege31 41331 |
This theorem is referenced by: frege33 41333 |
Copyright terms: Public domain | W3C validator |