Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege32 Structured version   Visualization version   GIF version

Theorem frege32 41332
Description: Deduce con1 146 from con3 153. Proposition 32 of [Frege1879] p. 44. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege32 (((¬ 𝜑𝜓) → (¬ 𝜓 → ¬ ¬ 𝜑)) → ((¬ 𝜑𝜓) → (¬ 𝜓𝜑)))

Proof of Theorem frege32
StepHypRef Expression
1 ax-frege31 41331 . 2 (¬ ¬ 𝜑𝜑)
2 frege7 41305 . 2 ((¬ ¬ 𝜑𝜑) → (((¬ 𝜑𝜓) → (¬ 𝜓 → ¬ ¬ 𝜑)) → ((¬ 𝜑𝜓) → (¬ 𝜓𝜑))))
31, 2ax-mp 5 1 (((¬ 𝜑𝜓) → (¬ 𝜓 → ¬ ¬ 𝜑)) → ((¬ 𝜑𝜓) → (¬ 𝜓𝜑)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 41287  ax-frege2 41288  ax-frege31 41331
This theorem is referenced by:  frege33  41333
  Copyright terms: Public domain W3C validator