| Mathbox for Richard Penner | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege61a | Structured version Visualization version GIF version | ||
| Description: Lemma for frege65a 43837. Proposition 61 of [Frege1879] p. 52. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) | 
| Ref | Expression | 
|---|---|
| frege61a | ⊢ ((if-(𝜑, 𝜓, 𝜒) → 𝜃) → ((𝜓 ∧ 𝜒) → 𝜃)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-frege58a 43829 | . 2 ⊢ ((𝜓 ∧ 𝜒) → if-(𝜑, 𝜓, 𝜒)) | |
| 2 | frege9 43766 | . 2 ⊢ (((𝜓 ∧ 𝜒) → if-(𝜑, 𝜓, 𝜒)) → ((if-(𝜑, 𝜓, 𝜒) → 𝜃) → ((𝜓 ∧ 𝜒) → 𝜃))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((if-(𝜑, 𝜓, 𝜒) → 𝜃) → ((𝜓 ∧ 𝜒) → 𝜃)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 if-wif 1062 | 
| This theorem was proved from axioms: ax-mp 5 ax-frege1 43744 ax-frege2 43745 ax-frege8 43763 ax-frege58a 43829 | 
| This theorem is referenced by: frege65a 43837 | 
| Copyright terms: Public domain | W3C validator |