Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege60a Structured version   Visualization version   GIF version

Theorem frege60a 40974
Description: Swap antecedents of ax-frege58a 40971. Proposition 60 of [Frege1879] p. 52. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege60a (((𝜓 → (𝜒𝜃)) ∧ (𝜏 → (𝜂𝜁))) → (if-(𝜑, 𝜒, 𝜂) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁))))

Proof of Theorem frege60a
StepHypRef Expression
1 frege58acor 40972 . . 3 (((𝜓 → (𝜒𝜃)) ∧ (𝜏 → (𝜂𝜁))) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, (𝜒𝜃), (𝜂𝜁))))
2 ifpimim 40612 . . 3 (if-(𝜑, (𝜒𝜃), (𝜂𝜁)) → (if-(𝜑, 𝜒, 𝜂) → if-(𝜑, 𝜃, 𝜁)))
31, 2syl6 35 . 2 (((𝜓 → (𝜒𝜃)) ∧ (𝜏 → (𝜂𝜁))) → (if-(𝜑, 𝜓, 𝜏) → (if-(𝜑, 𝜒, 𝜂) → if-(𝜑, 𝜃, 𝜁))))
4 frege12 40909 . 2 ((((𝜓 → (𝜒𝜃)) ∧ (𝜏 → (𝜂𝜁))) → (if-(𝜑, 𝜓, 𝜏) → (if-(𝜑, 𝜒, 𝜂) → if-(𝜑, 𝜃, 𝜁)))) → (((𝜓 → (𝜒𝜃)) ∧ (𝜏 → (𝜂𝜁))) → (if-(𝜑, 𝜒, 𝜂) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁)))))
53, 4ax-mp 5 1 (((𝜓 → (𝜒𝜃)) ∧ (𝜏 → (𝜂𝜁))) → (if-(𝜑, 𝜒, 𝜂) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  if-wif 1058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-frege1 40886  ax-frege2 40887  ax-frege8 40905  ax-frege58a 40971
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator