| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege60a | Structured version Visualization version GIF version | ||
| Description: Swap antecedents of ax-frege58a 43866. Proposition 60 of [Frege1879] p. 52. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege60a | ⊢ (((𝜓 → (𝜒 → 𝜃)) ∧ (𝜏 → (𝜂 → 𝜁))) → (if-(𝜑, 𝜒, 𝜂) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege58acor 43867 | . . 3 ⊢ (((𝜓 → (𝜒 → 𝜃)) ∧ (𝜏 → (𝜂 → 𝜁))) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, (𝜒 → 𝜃), (𝜂 → 𝜁)))) | |
| 2 | ifpimim 43500 | . . 3 ⊢ (if-(𝜑, (𝜒 → 𝜃), (𝜂 → 𝜁)) → (if-(𝜑, 𝜒, 𝜂) → if-(𝜑, 𝜃, 𝜁))) | |
| 3 | 1, 2 | syl6 35 | . 2 ⊢ (((𝜓 → (𝜒 → 𝜃)) ∧ (𝜏 → (𝜂 → 𝜁))) → (if-(𝜑, 𝜓, 𝜏) → (if-(𝜑, 𝜒, 𝜂) → if-(𝜑, 𝜃, 𝜁)))) |
| 4 | frege12 43804 | . 2 ⊢ ((((𝜓 → (𝜒 → 𝜃)) ∧ (𝜏 → (𝜂 → 𝜁))) → (if-(𝜑, 𝜓, 𝜏) → (if-(𝜑, 𝜒, 𝜂) → if-(𝜑, 𝜃, 𝜁)))) → (((𝜓 → (𝜒 → 𝜃)) ∧ (𝜏 → (𝜂 → 𝜁))) → (if-(𝜑, 𝜒, 𝜂) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁))))) | |
| 5 | 3, 4 | ax-mp 5 | 1 ⊢ (((𝜓 → (𝜒 → 𝜃)) ∧ (𝜏 → (𝜂 → 𝜁))) → (if-(𝜑, 𝜒, 𝜂) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 if-wif 1062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-frege1 43781 ax-frege2 43782 ax-frege8 43800 ax-frege58a 43866 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |