|   | Mathbox for Richard Penner | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege60a | Structured version Visualization version GIF version | ||
| Description: Swap antecedents of ax-frege58a 43888. Proposition 60 of [Frege1879] p. 52. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) | 
| Ref | Expression | 
|---|---|
| frege60a | ⊢ (((𝜓 → (𝜒 → 𝜃)) ∧ (𝜏 → (𝜂 → 𝜁))) → (if-(𝜑, 𝜒, 𝜂) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | frege58acor 43889 | . . 3 ⊢ (((𝜓 → (𝜒 → 𝜃)) ∧ (𝜏 → (𝜂 → 𝜁))) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, (𝜒 → 𝜃), (𝜂 → 𝜁)))) | |
| 2 | ifpimim 43522 | . . 3 ⊢ (if-(𝜑, (𝜒 → 𝜃), (𝜂 → 𝜁)) → (if-(𝜑, 𝜒, 𝜂) → if-(𝜑, 𝜃, 𝜁))) | |
| 3 | 1, 2 | syl6 35 | . 2 ⊢ (((𝜓 → (𝜒 → 𝜃)) ∧ (𝜏 → (𝜂 → 𝜁))) → (if-(𝜑, 𝜓, 𝜏) → (if-(𝜑, 𝜒, 𝜂) → if-(𝜑, 𝜃, 𝜁)))) | 
| 4 | frege12 43826 | . 2 ⊢ ((((𝜓 → (𝜒 → 𝜃)) ∧ (𝜏 → (𝜂 → 𝜁))) → (if-(𝜑, 𝜓, 𝜏) → (if-(𝜑, 𝜒, 𝜂) → if-(𝜑, 𝜃, 𝜁)))) → (((𝜓 → (𝜒 → 𝜃)) ∧ (𝜏 → (𝜂 → 𝜁))) → (if-(𝜑, 𝜒, 𝜂) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁))))) | |
| 5 | 3, 4 | ax-mp 5 | 1 ⊢ (((𝜓 → (𝜒 → 𝜃)) ∧ (𝜏 → (𝜂 → 𝜁))) → (if-(𝜑, 𝜒, 𝜂) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 if-wif 1063 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-frege1 43803 ax-frege2 43804 ax-frege8 43822 ax-frege58a 43888 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ifp 1064 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |