| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege65a | Structured version Visualization version GIF version | ||
| Description: A kind of Aristotelian inference. This judgement replaces the mode of inference barbara 2661 when the minor premise has a general context. Proposition 65 of [Frege1879] p. 53. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege65a | ⊢ (((𝜓 → 𝜒) ∧ (𝜏 → 𝜂)) → (((𝜒 → 𝜃) ∧ (𝜂 → 𝜁)) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifpimim 43463 | . . 3 ⊢ (if-(𝜑, (𝜓 → 𝜒), (𝜏 → 𝜂)) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜒, 𝜂))) | |
| 2 | frege64a 43836 | . . 3 ⊢ ((if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜒, 𝜂)) → (((𝜒 → 𝜃) ∧ (𝜂 → 𝜁)) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁)))) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (if-(𝜑, (𝜓 → 𝜒), (𝜏 → 𝜂)) → (((𝜒 → 𝜃) ∧ (𝜂 → 𝜁)) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁)))) |
| 4 | frege61a 43833 | . 2 ⊢ ((if-(𝜑, (𝜓 → 𝜒), (𝜏 → 𝜂)) → (((𝜒 → 𝜃) ∧ (𝜂 → 𝜁)) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁)))) → (((𝜓 → 𝜒) ∧ (𝜏 → 𝜂)) → (((𝜒 → 𝜃) ∧ (𝜂 → 𝜁)) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁))))) | |
| 5 | 3, 4 | ax-mp 5 | 1 ⊢ (((𝜓 → 𝜒) ∧ (𝜏 → 𝜂)) → (((𝜒 → 𝜃) ∧ (𝜂 → 𝜁)) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 if-wif 1062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-frege1 43744 ax-frege2 43745 ax-frege8 43763 ax-frege58a 43829 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 |
| This theorem is referenced by: frege66a 43838 |
| Copyright terms: Public domain | W3C validator |