Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege65a | Structured version Visualization version GIF version |
Description: A kind of Aristotelian inference. This judgement replaces the mode of inference barbara 2665 when the minor premise has a general context. Proposition 65 of [Frege1879] p. 53. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege65a | ⊢ (((𝜓 → 𝜒) ∧ (𝜏 → 𝜂)) → (((𝜒 → 𝜃) ∧ (𝜂 → 𝜁)) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifpimim 40986 | . . 3 ⊢ (if-(𝜑, (𝜓 → 𝜒), (𝜏 → 𝜂)) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜒, 𝜂))) | |
2 | frege64a 41352 | . . 3 ⊢ ((if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜒, 𝜂)) → (((𝜒 → 𝜃) ∧ (𝜂 → 𝜁)) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁)))) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (if-(𝜑, (𝜓 → 𝜒), (𝜏 → 𝜂)) → (((𝜒 → 𝜃) ∧ (𝜂 → 𝜁)) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁)))) |
4 | frege61a 41349 | . 2 ⊢ ((if-(𝜑, (𝜓 → 𝜒), (𝜏 → 𝜂)) → (((𝜒 → 𝜃) ∧ (𝜂 → 𝜁)) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁)))) → (((𝜓 → 𝜒) ∧ (𝜏 → 𝜂)) → (((𝜒 → 𝜃) ∧ (𝜂 → 𝜁)) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁))))) | |
5 | 3, 4 | ax-mp 5 | 1 ⊢ (((𝜓 → 𝜒) ∧ (𝜏 → 𝜂)) → (((𝜒 → 𝜃) ∧ (𝜂 → 𝜁)) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 if-wif 1063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-frege1 41260 ax-frege2 41261 ax-frege8 41279 ax-frege58a 41345 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-ifp 1064 |
This theorem is referenced by: frege66a 41354 |
Copyright terms: Public domain | W3C validator |