| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege9 | Structured version Visualization version GIF version | ||
| Description: Closed form of syl 17 with swapped antecedents. This proposition differs from frege5 43796 only in an unessential way. Identical to imim1 83. Proposition 9 of [Frege1879] p. 35. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege9 | ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege5 43796 | . 2 ⊢ ((𝜓 → 𝜒) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | |
| 2 | ax-frege8 43805 | . 2 ⊢ (((𝜓 → 𝜒) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) → ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒)))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-frege1 43786 ax-frege2 43787 ax-frege8 43805 |
| This theorem is referenced by: frege11 43810 frege10 43816 frege19 43820 frege21 43823 frege37 43836 frege56aid 43866 frege56a 43867 frege61a 43875 frege56b 43894 frege61b 43902 frege56c 43915 frege61c 43920 frege117 43976 frege130 43989 frege132 43991 |
| Copyright terms: Public domain | W3C validator |