![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege9 | Structured version Visualization version GIF version |
Description: Closed form of syl 17 with swapped antecedents. This proposition differs from frege5 42855 only in an unessential way. Identical to imim1 83. Proposition 9 of [Frege1879] p. 35. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege9 | ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege5 42855 | . 2 ⊢ ((𝜓 → 𝜒) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | |
2 | ax-frege8 42864 | . 2 ⊢ (((𝜓 → 𝜒) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) → ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒)))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-frege1 42845 ax-frege2 42846 ax-frege8 42864 |
This theorem is referenced by: frege11 42869 frege10 42875 frege19 42879 frege21 42882 frege37 42895 frege56aid 42925 frege56a 42926 frege61a 42934 frege56b 42953 frege61b 42961 frege56c 42974 frege61c 42979 frege117 43035 frege130 43048 frege132 43050 |
Copyright terms: Public domain | W3C validator |