Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege9 Structured version   Visualization version   GIF version

Theorem frege9 43808
Description: Closed form of syl 17 with swapped antecedents. This proposition differs from frege5 43796 only in an unessential way. Identical to imim1 83. Proposition 9 of [Frege1879] p. 35. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege9 ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))

Proof of Theorem frege9
StepHypRef Expression
1 frege5 43796 . 2 ((𝜓𝜒) → ((𝜑𝜓) → (𝜑𝜒)))
2 ax-frege8 43805 . 2 (((𝜓𝜒) → ((𝜑𝜓) → (𝜑𝜒))) → ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒))))
31, 2ax-mp 5 1 ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 43786  ax-frege2 43787  ax-frege8 43805
This theorem is referenced by:  frege11  43810  frege10  43816  frege19  43820  frege21  43823  frege37  43836  frege56aid  43866  frege56a  43867  frege61a  43875  frege56b  43894  frege61b  43902  frege56c  43915  frege61c  43920  frege117  43976  frege130  43989  frege132  43991
  Copyright terms: Public domain W3C validator