Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege9 Structured version   Visualization version   GIF version

Theorem frege9 43910
Description: Closed form of syl 17 with swapped antecedents. This proposition differs from frege5 43898 only in an unessential way. Identical to imim1 83. Proposition 9 of [Frege1879] p. 35. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege9 ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))

Proof of Theorem frege9
StepHypRef Expression
1 frege5 43898 . 2 ((𝜓𝜒) → ((𝜑𝜓) → (𝜑𝜒)))
2 ax-frege8 43907 . 2 (((𝜓𝜒) → ((𝜑𝜓) → (𝜑𝜒))) → ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒))))
31, 2ax-mp 5 1 ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 43888  ax-frege2 43889  ax-frege8 43907
This theorem is referenced by:  frege11  43912  frege10  43918  frege19  43922  frege21  43925  frege37  43938  frege56aid  43968  frege56a  43969  frege61a  43977  frege56b  43996  frege61b  44004  frege56c  44017  frege61c  44022  frege117  44078  frege130  44091  frege132  44093
  Copyright terms: Public domain W3C validator