Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege9 Structured version   Visualization version   GIF version

Theorem frege9 41282
Description: Closed form of syl 17 with swapped antecedents. This proposition differs from frege5 41270 only in an unessential way. Identical to imim1 83. Proposition 9 of [Frege1879] p. 35. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege9 ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))

Proof of Theorem frege9
StepHypRef Expression
1 frege5 41270 . 2 ((𝜓𝜒) → ((𝜑𝜓) → (𝜑𝜒)))
2 ax-frege8 41279 . 2 (((𝜓𝜒) → ((𝜑𝜓) → (𝜑𝜒))) → ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒))))
31, 2ax-mp 5 1 ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 41260  ax-frege2 41261  ax-frege8 41279
This theorem is referenced by:  frege11  41284  frege10  41290  frege19  41294  frege21  41297  frege37  41310  frege56aid  41340  frege56a  41341  frege61a  41349  frege56b  41368  frege61b  41376  frege56c  41389  frege61c  41394  frege117  41450  frege130  41463  frege132  41465
  Copyright terms: Public domain W3C validator