Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege9 Structured version   Visualization version   GIF version

Theorem frege9 43801
Description: Closed form of syl 17 with swapped antecedents. This proposition differs from frege5 43789 only in an unessential way. Identical to imim1 83. Proposition 9 of [Frege1879] p. 35. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege9 ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))

Proof of Theorem frege9
StepHypRef Expression
1 frege5 43789 . 2 ((𝜓𝜒) → ((𝜑𝜓) → (𝜑𝜒)))
2 ax-frege8 43798 . 2 (((𝜓𝜒) → ((𝜑𝜓) → (𝜑𝜒))) → ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒))))
31, 2ax-mp 5 1 ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 43779  ax-frege2 43780  ax-frege8 43798
This theorem is referenced by:  frege11  43803  frege10  43809  frege19  43813  frege21  43816  frege37  43829  frege56aid  43859  frege56a  43860  frege61a  43868  frege56b  43887  frege61b  43895  frege56c  43908  frege61c  43913  frege117  43969  frege130  43982  frege132  43984
  Copyright terms: Public domain W3C validator