Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege9 Structured version   Visualization version   GIF version

Theorem frege9 40966
Description: Closed form of syl 17 with swapped antecedents. This proposition differs from frege5 40954 only in an unessential way. Identical to imim1 83. Proposition 9 of [Frege1879] p. 35. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege9 ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))

Proof of Theorem frege9
StepHypRef Expression
1 frege5 40954 . 2 ((𝜓𝜒) → ((𝜑𝜓) → (𝜑𝜒)))
2 ax-frege8 40963 . 2 (((𝜓𝜒) → ((𝜑𝜓) → (𝜑𝜒))) → ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒))))
31, 2ax-mp 5 1 ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 40944  ax-frege2 40945  ax-frege8 40963
This theorem is referenced by:  frege11  40968  frege10  40974  frege19  40978  frege21  40981  frege37  40994  frege56aid  41024  frege56a  41025  frege61a  41033  frege56b  41052  frege61b  41060  frege56c  41073  frege61c  41078  frege117  41134  frege130  41147  frege132  41149
  Copyright terms: Public domain W3C validator