|   | Mathbox for Richard Penner | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege61b | Structured version Visualization version GIF version | ||
| Description: Lemma for frege65b 43928. Proposition 61 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) | 
| Ref | Expression | 
|---|---|
| frege61b | ⊢ (([𝑥 / 𝑦]𝜑 → 𝜓) → (∀𝑦𝜑 → 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-frege58b 43919 | . 2 ⊢ (∀𝑦𝜑 → [𝑥 / 𝑦]𝜑) | |
| 2 | frege9 43830 | . 2 ⊢ ((∀𝑦𝜑 → [𝑥 / 𝑦]𝜑) → (([𝑥 / 𝑦]𝜑 → 𝜓) → (∀𝑦𝜑 → 𝜓))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (([𝑥 / 𝑦]𝜑 → 𝜓) → (∀𝑦𝜑 → 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∀wal 1537 [wsb 2063 | 
| This theorem was proved from axioms: ax-mp 5 ax-frege1 43808 ax-frege2 43809 ax-frege8 43827 ax-frege58b 43919 | 
| This theorem is referenced by: frege65b 43928 | 
| Copyright terms: Public domain | W3C validator |