Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege61b | Structured version Visualization version GIF version |
Description: Lemma for frege65b 41407. Proposition 61 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege61b | ⊢ (([𝑥 / 𝑦]𝜑 → 𝜓) → (∀𝑦𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-frege58b 41398 | . 2 ⊢ (∀𝑦𝜑 → [𝑥 / 𝑦]𝜑) | |
2 | frege9 41309 | . 2 ⊢ ((∀𝑦𝜑 → [𝑥 / 𝑦]𝜑) → (([𝑥 / 𝑦]𝜑 → 𝜓) → (∀𝑦𝜑 → 𝜓))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (([𝑥 / 𝑦]𝜑 → 𝜓) → (∀𝑦𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-frege1 41287 ax-frege2 41288 ax-frege8 41306 ax-frege58b 41398 |
This theorem is referenced by: frege65b 41407 |
Copyright terms: Public domain | W3C validator |