Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege61b Structured version   Visualization version   GIF version

Theorem frege61b 38724
Description: Lemma for frege65b 38728. Proposition 61 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege61b (([𝑥 / 𝑦]𝜑𝜓) → (∀𝑦𝜑𝜓))

Proof of Theorem frege61b
StepHypRef Expression
1 ax-frege58b 38719 . 2 (∀𝑦𝜑 → [𝑥 / 𝑦]𝜑)
2 frege9 38630 . 2 ((∀𝑦𝜑 → [𝑥 / 𝑦]𝜑) → (([𝑥 / 𝑦]𝜑𝜓) → (∀𝑦𝜑𝜓)))
31, 2ax-mp 5 1 (([𝑥 / 𝑦]𝜑𝜓) → (∀𝑦𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1629  [wsb 2049
This theorem was proved from axioms:  ax-mp 5  ax-frege1 38608  ax-frege2 38609  ax-frege8 38627  ax-frege58b 38719
This theorem is referenced by:  frege65b  38728
  Copyright terms: Public domain W3C validator