| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege61b | Structured version Visualization version GIF version | ||
| Description: Lemma for frege65b 43901. Proposition 61 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege61b | ⊢ (([𝑥 / 𝑦]𝜑 → 𝜓) → (∀𝑦𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-frege58b 43892 | . 2 ⊢ (∀𝑦𝜑 → [𝑥 / 𝑦]𝜑) | |
| 2 | frege9 43803 | . 2 ⊢ ((∀𝑦𝜑 → [𝑥 / 𝑦]𝜑) → (([𝑥 / 𝑦]𝜑 → 𝜓) → (∀𝑦𝜑 → 𝜓))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (([𝑥 / 𝑦]𝜑 → 𝜓) → (∀𝑦𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-frege1 43781 ax-frege2 43782 ax-frege8 43800 ax-frege58b 43892 |
| This theorem is referenced by: frege65b 43901 |
| Copyright terms: Public domain | W3C validator |