Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege65b Structured version   Visualization version   GIF version

Theorem frege65b 43872
Description: A kind of Aristotelian inference. This judgement replaces the mode of inference barbara 2666 when the minor premise has a general context. Proposition 65 of [Frege1879] p. 53.

In Frege care is taken to point out that the variables in the first clauses are independent of each other and of the final term so another valid translation could be : (∀𝑥([𝑥 / 𝑎]𝜑 → [𝑥 / 𝑏]𝜓) → (∀𝑦([𝑦 / 𝑏]𝜓 → [𝑦 / 𝑐]𝜒) → ([𝑧 / 𝑎]𝜑 → [𝑧 / 𝑐]𝜒))). But that is perhaps too pedantic a translation for this exploration. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)

Assertion
Ref Expression
frege65b (∀𝑥(𝜑𝜓) → (∀𝑥(𝜓𝜒) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜒)))

Proof of Theorem frege65b
StepHypRef Expression
1 sbim 2307 . . 3 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
2 frege64b 43871 . . 3 (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) → (∀𝑥(𝜓𝜒) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜒)))
31, 2sylbi 217 . 2 ([𝑦 / 𝑥](𝜑𝜓) → (∀𝑥(𝜓𝜒) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜒)))
4 frege61b 43868 . 2 (([𝑦 / 𝑥](𝜑𝜓) → (∀𝑥(𝜓𝜒) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜒))) → (∀𝑥(𝜑𝜓) → (∀𝑥(𝜓𝜒) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜒))))
53, 4ax-mp 5 1 (∀𝑥(𝜑𝜓) → (∀𝑥(𝜓𝜒) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141  ax-12 2178  ax-frege1 43752  ax-frege2 43753  ax-frege8 43771  ax-frege58b 43863
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-nf 1782  df-sb 2065
This theorem is referenced by:  frege66b  43873
  Copyright terms: Public domain W3C validator