|   | Mathbox for Richard Penner | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege62b | Structured version Visualization version GIF version | ||
| Description: A kind of Aristotelian inference. This judgement replaces the mode of inference barbara 2663 when the minor premise has a particular context. Proposition 62 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) | 
| Ref | Expression | 
|---|---|
| frege62b | ⊢ ([𝑦 / 𝑥]𝜑 → (∀𝑥(𝜑 → 𝜓) → [𝑦 / 𝑥]𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | frege58bcor 43916 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | |
| 2 | ax-frege8 43822 | . 2 ⊢ ((∀𝑥(𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) → ([𝑦 / 𝑥]𝜑 → (∀𝑥(𝜑 → 𝜓) → [𝑦 / 𝑥]𝜓))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → (∀𝑥(𝜑 → 𝜓) → [𝑦 / 𝑥]𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∀wal 1538 [wsb 2064 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 ax-frege8 43822 ax-frege58b 43914 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-sb 2065 | 
| This theorem is referenced by: frege63b 43921 frege64b 43922 | 
| Copyright terms: Public domain | W3C validator |