![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege62b | Structured version Visualization version GIF version |
Description: A kind of Aristotelian inference. This judgement replaces the mode of inference barbara 2658 when the minor premise has a particular context. Proposition 62 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege62b | ⊢ ([𝑦 / 𝑥]𝜑 → (∀𝑥(𝜑 → 𝜓) → [𝑦 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege58bcor 42644 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | |
2 | ax-frege8 42550 | . 2 ⊢ ((∀𝑥(𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) → ([𝑦 / 𝑥]𝜑 → (∀𝑥(𝜑 → 𝜓) → [𝑦 / 𝑥]𝜓))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → (∀𝑥(𝜑 → 𝜓) → [𝑦 / 𝑥]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1539 [wsb 2067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-12 2171 ax-frege8 42550 ax-frege58b 42642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-ex 1782 df-nf 1786 df-sb 2068 |
This theorem is referenced by: frege63b 42649 frege64b 42650 |
Copyright terms: Public domain | W3C validator |