MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imbi2 Structured version   Visualization version   GIF version

Theorem imbi2 348
Description: Theorem *4.85 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 19-May-2013.)
Assertion
Ref Expression
imbi2 ((𝜑𝜓) → ((𝜒𝜑) ↔ (𝜒𝜓)))

Proof of Theorem imbi2
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
21imbi2d 340 1 ((𝜑𝜓) → ((𝜒𝜑) ↔ (𝜒𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  imbibi  391  con3ALT  1084  axpr  5377  relexpindlem  15005  relexpind  15006  unielss  43180  ifpbi2  43429  ifpbi3  43430  3impexpbicom  44443  sbcim2g  44501  3impexpbicomVD  44819  sbcim2gVD  44837  csbeq2gVD  44854  con5VD  44862  hbexgVD  44868  ax6e2ndeqVD  44871  2sb5ndVD  44872  ax6e2ndeqALT  44893  2sb5ndALT  44894
  Copyright terms: Public domain W3C validator