MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imbi2 Structured version   Visualization version   GIF version

Theorem imbi2 348
Description: Theorem *4.85 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 19-May-2013.)
Assertion
Ref Expression
imbi2 ((𝜑𝜓) → ((𝜒𝜑) ↔ (𝜒𝜓)))

Proof of Theorem imbi2
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
21imbi2d 340 1 ((𝜑𝜓) → ((𝜒𝜑) ↔ (𝜒𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  imbibi  391  con3ALT  1084  axpr  5360  relexpindlem  14965  relexpind  14966  unielss  43251  ifpbi2  43500  ifpbi3  43501  3impexpbicom  44513  sbcim2g  44571  3impexpbicomVD  44889  sbcim2gVD  44907  csbeq2gVD  44924  con5VD  44932  hbexgVD  44938  ax6e2ndeqVD  44941  2sb5ndVD  44942  ax6e2ndeqALT  44963  2sb5ndALT  44964
  Copyright terms: Public domain W3C validator