MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imbi2 Structured version   Visualization version   GIF version

Theorem imbi2 348
Description: Theorem *4.85 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 19-May-2013.)
Assertion
Ref Expression
imbi2 ((𝜑𝜓) → ((𝜒𝜑) ↔ (𝜒𝜓)))

Proof of Theorem imbi2
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
21imbi2d 340 1 ((𝜑𝜓) → ((𝜒𝜑) ↔ (𝜒𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  imbibi  391  con3ALT  1085  relexpindlem  15112  relexpind  15113  unielss  43179  ifpbi2  43429  ifpbi3  43430  3impexpbicom  44450  sbcim2g  44509  3impexpbicomVD  44828  sbcim2gVD  44846  csbeq2gVD  44863  con5VD  44871  hbexgVD  44877  ax6e2ndeqVD  44880  2sb5ndVD  44881  ax6e2ndeqALT  44902  2sb5ndALT  44903
  Copyright terms: Public domain W3C validator