| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imbi2 | Structured version Visualization version GIF version | ||
| Description: Theorem *4.85 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
| Ref | Expression |
|---|---|
| imbi2 | ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | imbi2d 340 | 1 ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: imbibi 391 con3ALT 1084 axpr 5366 relexpindlem 14970 relexpind 14971 unielss 43191 ifpbi2 43440 ifpbi3 43441 3impexpbicom 44454 sbcim2g 44512 3impexpbicomVD 44830 sbcim2gVD 44848 csbeq2gVD 44865 con5VD 44873 hbexgVD 44879 ax6e2ndeqVD 44882 2sb5ndVD 44883 ax6e2ndeqALT 44904 2sb5ndALT 44905 |
| Copyright terms: Public domain | W3C validator |