![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imbi2 | Structured version Visualization version GIF version |
Description: Theorem *4.85 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
Ref | Expression |
---|---|
imbi2 | ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 ↔ 𝜓)) | |
2 | 1 | imbi2d 340 | 1 ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: imbibi 391 con3ALT 1085 relexpindlem 15112 relexpind 15113 unielss 43179 ifpbi2 43429 ifpbi3 43430 3impexpbicom 44450 sbcim2g 44509 3impexpbicomVD 44828 sbcim2gVD 44846 csbeq2gVD 44863 con5VD 44871 hbexgVD 44877 ax6e2ndeqVD 44880 2sb5ndVD 44881 ax6e2ndeqALT 44902 2sb5ndALT 44903 |
Copyright terms: Public domain | W3C validator |