| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imbi2 | Structured version Visualization version GIF version | ||
| Description: Theorem *4.85 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
| Ref | Expression |
|---|---|
| imbi2 | ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | imbi2d 340 | 1 ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: imbibi 391 con3ALT 1084 axpr 5382 relexpindlem 15029 relexpind 15030 unielss 43207 ifpbi2 43456 ifpbi3 43457 3impexpbicom 44470 sbcim2g 44528 3impexpbicomVD 44846 sbcim2gVD 44864 csbeq2gVD 44881 con5VD 44889 hbexgVD 44895 ax6e2ndeqVD 44898 2sb5ndVD 44899 ax6e2ndeqALT 44920 2sb5ndALT 44921 |
| Copyright terms: Public domain | W3C validator |