Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imbi2 | Structured version Visualization version GIF version |
Description: Theorem *4.85 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
Ref | Expression |
---|---|
imbi2 | ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 ↔ 𝜓)) | |
2 | 1 | imbi2d 340 | 1 ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: con3ALT 1083 relexpindlem 14702 relexpind 14703 ifpbi2 40972 ifpbi3 40973 3impexpbicom 41988 sbcim2g 42047 3impexpbicomVD 42366 sbcim2gVD 42384 csbeq2gVD 42401 con5VD 42409 hbexgVD 42415 ax6e2ndeqVD 42418 2sb5ndVD 42419 ax6e2ndeqALT 42440 2sb5ndALT 42441 |
Copyright terms: Public domain | W3C validator |