MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imbi2 Structured version   Visualization version   GIF version

Theorem imbi2 348
Description: Theorem *4.85 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 19-May-2013.)
Assertion
Ref Expression
imbi2 ((𝜑𝜓) → ((𝜒𝜑) ↔ (𝜒𝜓)))

Proof of Theorem imbi2
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
21imbi2d 340 1 ((𝜑𝜓) → ((𝜒𝜑) ↔ (𝜒𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  imbibi  391  con3ALT  1084  axpr  5366  relexpindlem  14970  relexpind  14971  unielss  43191  ifpbi2  43440  ifpbi3  43441  3impexpbicom  44454  sbcim2g  44512  3impexpbicomVD  44830  sbcim2gVD  44848  csbeq2gVD  44865  con5VD  44873  hbexgVD  44879  ax6e2ndeqVD  44882  2sb5ndVD  44883  ax6e2ndeqALT  44904  2sb5ndALT  44905
  Copyright terms: Public domain W3C validator