| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imbi2 | Structured version Visualization version GIF version | ||
| Description: Theorem *4.85 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
| Ref | Expression |
|---|---|
| imbi2 | ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | imbi2d 340 | 1 ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: imbibi 391 con3ALT 1084 axpr 5360 relexpindlem 14965 relexpind 14966 unielss 43251 ifpbi2 43500 ifpbi3 43501 3impexpbicom 44513 sbcim2g 44571 3impexpbicomVD 44889 sbcim2gVD 44907 csbeq2gVD 44924 con5VD 44932 hbexgVD 44938 ax6e2ndeqVD 44941 2sb5ndVD 44942 ax6e2ndeqALT 44963 2sb5ndALT 44964 |
| Copyright terms: Public domain | W3C validator |