| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imbi2 | Structured version Visualization version GIF version | ||
| Description: Theorem *4.85 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
| Ref | Expression |
|---|---|
| imbi2 | ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | imbi2d 340 | 1 ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: imbibi 391 con3ALT 1084 axpr 5385 relexpindlem 15036 relexpind 15037 unielss 43214 ifpbi2 43463 ifpbi3 43464 3impexpbicom 44477 sbcim2g 44535 3impexpbicomVD 44853 sbcim2gVD 44871 csbeq2gVD 44888 con5VD 44896 hbexgVD 44902 ax6e2ndeqVD 44905 2sb5ndVD 44906 ax6e2ndeqALT 44927 2sb5ndALT 44928 |
| Copyright terms: Public domain | W3C validator |