MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imbi2 Structured version   Visualization version   GIF version

Theorem imbi2 348
Description: Theorem *4.85 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 19-May-2013.)
Assertion
Ref Expression
imbi2 ((𝜑𝜓) → ((𝜒𝜑) ↔ (𝜒𝜓)))

Proof of Theorem imbi2
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
21imbi2d 340 1 ((𝜑𝜓) → ((𝜒𝜑) ↔ (𝜒𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  imbibi  392  con3ALT  1085  relexpindlem  15014  relexpind  15015  unielss  42269  ifpbi2  42520  ifpbi3  42521  3impexpbicom  43542  sbcim2g  43601  3impexpbicomVD  43920  sbcim2gVD  43938  csbeq2gVD  43955  con5VD  43963  hbexgVD  43969  ax6e2ndeqVD  43972  2sb5ndVD  43973  ax6e2ndeqALT  43994  2sb5ndALT  43995
  Copyright terms: Public domain W3C validator