| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snssg | Structured version Visualization version GIF version | ||
| Description: The singleton formed on a set is included in a class if and only if the set is an element of that class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 22-Jul-2001.) (Proof shortened by BJ, 1-Jan-2025.) |
| Ref | Expression |
|---|---|
| snssg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssb 4758 | . . 3 ⊢ ({𝐴} ⊆ 𝐵 ↔ (𝐴 ∈ V → 𝐴 ∈ 𝐵)) | |
| 2 | 1 | bicomi 224 | . 2 ⊢ ((𝐴 ∈ V → 𝐴 ∈ 𝐵) ↔ {𝐴} ⊆ 𝐵) |
| 3 | elex 3480 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 4 | imbibi 391 | . 2 ⊢ (((𝐴 ∈ V → 𝐴 ∈ 𝐵) ↔ {𝐴} ⊆ 𝐵) → (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵))) | |
| 5 | 2, 3, 4 | mpsyl 68 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 {csn 4601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-ss 3943 df-sn 4602 |
| This theorem is referenced by: snss 4761 tppreqb 4781 snssi 4784 prssg 4795 snelpwg 5417 relsng 5780 fvimacnvALT 7047 fr3nr 7766 vdwapid1 16995 acsfn 17671 cycsubg2 19193 cycsubg2cl 19194 pgpfac1lem1 20057 pgpfac1lem3a 20059 pgpfac1lem3 20060 pgpfac1lem5 20062 pgpfaclem2 20065 lspsnid 20950 lidldvgen 21295 isneip 23043 elnei 23049 iscnp4 23201 cnpnei 23202 nlly2i 23414 1stckgenlem 23491 flimopn 23913 flimclslem 23922 fclsneii 23955 fcfnei 23973 rrx0el 25350 limcvallem 25824 ellimc2 25830 limcflf 25834 limccnp 25844 limccnp2 25845 limcco 25846 lhop2 25972 plyrem 26265 isppw 27076 lpvtx 29047 h1did 31532 prssad 32510 prssbd 32511 tpssg 32518 rspsnid 33386 dvdsrspss 33402 unitpidl1 33439 mxidlirred 33487 qsdrngilem 33509 evls1fldgencl 33711 erdszelem8 35220 neibastop2 36379 prnc 38091 proot1mul 43218 uneqsn 44049 mnuprdlem1 44296 islptre 45648 rrxsnicc 46329 sclnbgrelself 47861 |
| Copyright terms: Public domain | W3C validator |