| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snssg | Structured version Visualization version GIF version | ||
| Description: The singleton formed on a set is included in a class if and only if the set is an element of that class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 22-Jul-2001.) (Proof shortened by BJ, 1-Jan-2025.) |
| Ref | Expression |
|---|---|
| snssg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssb 4749 | . . 3 ⊢ ({𝐴} ⊆ 𝐵 ↔ (𝐴 ∈ V → 𝐴 ∈ 𝐵)) | |
| 2 | 1 | bicomi 224 | . 2 ⊢ ((𝐴 ∈ V → 𝐴 ∈ 𝐵) ↔ {𝐴} ⊆ 𝐵) |
| 3 | elex 3471 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 4 | imbibi 391 | . 2 ⊢ (((𝐴 ∈ V → 𝐴 ∈ 𝐵) ↔ {𝐴} ⊆ 𝐵) → (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵))) | |
| 5 | 2, 3, 4 | mpsyl 68 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 {csn 4592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-sn 4593 |
| This theorem is referenced by: snss 4752 tppreqb 4772 snssi 4775 prssg 4786 snelpwg 5405 relsng 5767 fvimacnvALT 7032 fr3nr 7751 vdwapid1 16953 acsfn 17627 cycsubg2 19149 cycsubg2cl 19150 pgpfac1lem1 20013 pgpfac1lem3a 20015 pgpfac1lem3 20016 pgpfac1lem5 20018 pgpfaclem2 20021 lspsnid 20906 lidldvgen 21251 isneip 22999 elnei 23005 iscnp4 23157 cnpnei 23158 nlly2i 23370 1stckgenlem 23447 flimopn 23869 flimclslem 23878 fclsneii 23911 fcfnei 23929 rrx0el 25305 limcvallem 25779 ellimc2 25785 limcflf 25789 limccnp 25799 limccnp2 25800 limcco 25801 lhop2 25927 plyrem 26220 isppw 27031 lpvtx 29002 h1did 31487 prssad 32465 prssbd 32466 tpssg 32473 rspsnid 33349 dvdsrspss 33365 unitpidl1 33402 mxidlirred 33450 qsdrngilem 33472 evls1fldgencl 33672 erdszelem8 35192 neibastop2 36356 prnc 38068 proot1mul 43190 uneqsn 44021 mnuprdlem1 44268 islptre 45624 rrxsnicc 46305 sclnbgrelself 47852 |
| Copyright terms: Public domain | W3C validator |