![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snssg | Structured version Visualization version GIF version |
Description: The singleton formed on a set is included in a class if and only if the set is an element of that class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 22-Jul-2001.) (Proof shortened by BJ, 1-Jan-2025.) |
Ref | Expression |
---|---|
snssg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssb 4786 | . . 3 ⊢ ({𝐴} ⊆ 𝐵 ↔ (𝐴 ∈ V → 𝐴 ∈ 𝐵)) | |
2 | 1 | bicomi 223 | . 2 ⊢ ((𝐴 ∈ V → 𝐴 ∈ 𝐵) ↔ {𝐴} ⊆ 𝐵) |
3 | elex 3492 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
4 | imbibi 392 | . 2 ⊢ (((𝐴 ∈ V → 𝐴 ∈ 𝐵) ↔ {𝐴} ⊆ 𝐵) → (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵))) | |
5 | 2, 3, 4 | mpsyl 68 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2106 Vcvv 3474 ⊆ wss 3948 {csn 4628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-in 3955 df-ss 3965 df-sn 4629 |
This theorem is referenced by: snss 4789 tppreqb 4808 snssi 4811 prssg 4822 snelpwg 5442 relsng 5801 fvimacnvALT 7058 fr3nr 7761 vdwapid1 16912 acsfn 17607 cycsubg2 19125 cycsubg2cl 19126 pgpfac1lem1 19985 pgpfac1lem3a 19987 pgpfac1lem3 19988 pgpfac1lem5 19990 pgpfaclem2 19993 lspsnid 20748 lidldvgen 21093 isneip 22829 elnei 22835 iscnp4 22987 cnpnei 22988 nlly2i 23200 1stckgenlem 23277 flimopn 23699 flimclslem 23708 fclsneii 23741 fcfnei 23759 rrx0el 25139 limcvallem 25612 ellimc2 25618 limcflf 25622 limccnp 25632 limccnp2 25633 limcco 25634 lhop2 25756 plyrem 26042 isppw 26842 lpvtx 28583 h1did 31059 rspsnid 32747 dvdsrspss 32753 unitpidl1 32804 mxidlirred 32850 qsdrngilem 32870 evls1fldgencl 33021 erdszelem8 34475 neibastop2 35549 prnc 37238 proot1mul 42243 uneqsn 43078 mnuprdlem1 43333 islptre 44634 rrxsnicc 45315 |
Copyright terms: Public domain | W3C validator |