| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snssg | Structured version Visualization version GIF version | ||
| Description: The singleton formed on a set is included in a class if and only if the set is an element of that class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 22-Jul-2001.) (Proof shortened by BJ, 1-Jan-2025.) |
| Ref | Expression |
|---|---|
| snssg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssb 4736 | . . 3 ⊢ ({𝐴} ⊆ 𝐵 ↔ (𝐴 ∈ V → 𝐴 ∈ 𝐵)) | |
| 2 | 1 | bicomi 224 | . 2 ⊢ ((𝐴 ∈ V → 𝐴 ∈ 𝐵) ↔ {𝐴} ⊆ 𝐵) |
| 3 | elex 3459 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 4 | imbibi 391 | . 2 ⊢ (((𝐴 ∈ V → 𝐴 ∈ 𝐵) ↔ {𝐴} ⊆ 𝐵) → (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵))) | |
| 5 | 2, 3, 4 | mpsyl 68 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 {csn 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-ss 3922 df-sn 4580 |
| This theorem is referenced by: snss 4739 tppreqb 4759 snssi 4762 prssg 4773 snelpwg 5389 relsng 5748 fvimacnvALT 6995 fr3nr 7712 vdwapid1 16905 acsfn 17583 cycsubg2 19107 cycsubg2cl 19108 pgpfac1lem1 19973 pgpfac1lem3a 19975 pgpfac1lem3 19976 pgpfac1lem5 19978 pgpfaclem2 19981 lspsnid 20914 lidldvgen 21259 isneip 23008 elnei 23014 iscnp4 23166 cnpnei 23167 nlly2i 23379 1stckgenlem 23456 flimopn 23878 flimclslem 23887 fclsneii 23920 fcfnei 23938 rrx0el 25314 limcvallem 25788 ellimc2 25794 limcflf 25798 limccnp 25808 limccnp2 25809 limcco 25810 lhop2 25936 plyrem 26229 isppw 27040 lpvtx 29031 h1did 31513 prssad 32491 prssbd 32492 tpssg 32499 rspsnid 33318 dvdsrspss 33334 unitpidl1 33371 mxidlirred 33419 qsdrngilem 33441 evls1fldgencl 33641 erdszelem8 35170 neibastop2 36334 prnc 38046 proot1mul 43167 uneqsn 43998 mnuprdlem1 44245 islptre 45601 rrxsnicc 46282 sclnbgrelself 47833 |
| Copyright terms: Public domain | W3C validator |