| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snssg | Structured version Visualization version GIF version | ||
| Description: The singleton formed on a set is included in a class if and only if the set is an element of that class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 22-Jul-2001.) (Proof shortened by BJ, 1-Jan-2025.) |
| Ref | Expression |
|---|---|
| snssg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssb 4735 | . . 3 ⊢ ({𝐴} ⊆ 𝐵 ↔ (𝐴 ∈ V → 𝐴 ∈ 𝐵)) | |
| 2 | 1 | bicomi 224 | . 2 ⊢ ((𝐴 ∈ V → 𝐴 ∈ 𝐵) ↔ {𝐴} ⊆ 𝐵) |
| 3 | elex 3457 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 4 | imbibi 391 | . 2 ⊢ (((𝐴 ∈ V → 𝐴 ∈ 𝐵) ↔ {𝐴} ⊆ 𝐵) → (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵))) | |
| 5 | 2, 3, 4 | mpsyl 68 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3902 {csn 4576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3919 df-sn 4577 |
| This theorem is referenced by: snss 4737 tppreqb 4757 snssi 4760 prssg 4771 snelpwg 5384 relsng 5741 fvimacnvALT 6990 fr3nr 7705 vdwapid1 16884 acsfn 17562 cycsubg2 19120 cycsubg2cl 19121 pgpfac1lem1 19986 pgpfac1lem3a 19988 pgpfac1lem3 19989 pgpfac1lem5 19991 pgpfaclem2 19994 lspsnid 20924 lidldvgen 21269 isneip 23018 elnei 23024 iscnp4 23176 cnpnei 23177 nlly2i 23389 1stckgenlem 23466 flimopn 23888 flimclslem 23897 fclsneii 23930 fcfnei 23948 rrx0el 25323 limcvallem 25797 ellimc2 25803 limcflf 25807 limccnp 25817 limccnp2 25818 limcco 25819 lhop2 25945 plyrem 26238 isppw 27049 lpvtx 29044 h1did 31526 prssad 32504 prssbd 32505 tpssg 32512 rspsnid 33331 dvdsrspss 33347 unitpidl1 33384 mxidlirred 33432 qsdrngilem 33454 evls1fldgencl 33678 erdszelem8 35230 neibastop2 36394 prnc 38106 proot1mul 43226 uneqsn 44057 mnuprdlem1 44304 islptre 45658 rrxsnicc 46337 sclnbgrelself 47878 |
| Copyright terms: Public domain | W3C validator |