| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snssg | Structured version Visualization version GIF version | ||
| Description: The singleton formed on a set is included in a class if and only if the set is an element of that class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 22-Jul-2001.) (Proof shortened by BJ, 1-Jan-2025.) |
| Ref | Expression |
|---|---|
| snssg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssb 4746 | . . 3 ⊢ ({𝐴} ⊆ 𝐵 ↔ (𝐴 ∈ V → 𝐴 ∈ 𝐵)) | |
| 2 | 1 | bicomi 224 | . 2 ⊢ ((𝐴 ∈ V → 𝐴 ∈ 𝐵) ↔ {𝐴} ⊆ 𝐵) |
| 3 | elex 3468 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 4 | imbibi 391 | . 2 ⊢ (((𝐴 ∈ V → 𝐴 ∈ 𝐵) ↔ {𝐴} ⊆ 𝐵) → (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵))) | |
| 5 | 2, 3, 4 | mpsyl 68 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 {csn 4589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-sn 4590 |
| This theorem is referenced by: snss 4749 tppreqb 4769 snssi 4772 prssg 4783 snelpwg 5402 relsng 5764 fvimacnvALT 7029 fr3nr 7748 vdwapid1 16946 acsfn 17620 cycsubg2 19142 cycsubg2cl 19143 pgpfac1lem1 20006 pgpfac1lem3a 20008 pgpfac1lem3 20009 pgpfac1lem5 20011 pgpfaclem2 20014 lspsnid 20899 lidldvgen 21244 isneip 22992 elnei 22998 iscnp4 23150 cnpnei 23151 nlly2i 23363 1stckgenlem 23440 flimopn 23862 flimclslem 23871 fclsneii 23904 fcfnei 23922 rrx0el 25298 limcvallem 25772 ellimc2 25778 limcflf 25782 limccnp 25792 limccnp2 25793 limcco 25794 lhop2 25920 plyrem 26213 isppw 27024 lpvtx 28995 h1did 31480 prssad 32458 prssbd 32459 tpssg 32466 rspsnid 33342 dvdsrspss 33358 unitpidl1 33395 mxidlirred 33443 qsdrngilem 33465 evls1fldgencl 33665 erdszelem8 35185 neibastop2 36349 prnc 38061 proot1mul 43183 uneqsn 44014 mnuprdlem1 44261 islptre 45617 rrxsnicc 46298 sclnbgrelself 47848 |
| Copyright terms: Public domain | W3C validator |