Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snssg | Structured version Visualization version GIF version |
Description: The singleton of an element of a class is a subset of the class (general form of snss 4716). Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 22-Jul-2001.) |
Ref | Expression |
---|---|
snssg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velsn 4574 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
2 | 1 | imbi1i 349 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵) ↔ (𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) |
3 | 2 | albii 1823 | . . 3 ⊢ (∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) |
4 | 3 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵))) |
5 | dfss2 3903 | . . 3 ⊢ ({𝐴} ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵)) | |
6 | 5 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵))) |
7 | clel2g 3581 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵))) | |
8 | 4, 6, 7 | 3bitr4rd 311 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 {csn 4558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-sn 4559 |
This theorem is referenced by: snss 4716 tppreqb 4735 snssi 4738 prssg 4749 relsng 5700 fvimacnvALT 6916 fr3nr 7600 vdwapid1 16604 acsfn 17285 cycsubg2 18744 cycsubg2cl 18745 pgpfac1lem1 19592 pgpfac1lem3a 19594 pgpfac1lem3 19595 pgpfac1lem5 19597 pgpfaclem2 19600 lspsnid 20170 lidldvgen 20439 isneip 22164 elnei 22170 iscnp4 22322 cnpnei 22323 nlly2i 22535 1stckgenlem 22612 flimopn 23034 flimclslem 23043 fclsneii 23076 fcfnei 23094 rrx0el 24467 limcvallem 24940 ellimc2 24946 limcflf 24950 limccnp 24960 limccnp2 24961 limcco 24962 lhop2 25084 plyrem 25370 isppw 26168 lpvtx 27341 h1did 29814 rspsnid 31470 erdszelem8 33060 neibastop2 34477 prnc 36152 proot1mul 40940 uneqsn 41522 mnuprdlem1 41779 islptre 43050 rrxsnicc 43731 |
Copyright terms: Public domain | W3C validator |