![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snssg | Structured version Visualization version GIF version |
Description: The singleton formed on a set is included in a class if and only if the set is an element of that class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 22-Jul-2001.) (Proof shortened by BJ, 1-Jan-2025.) |
Ref | Expression |
---|---|
snssg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssb 4807 | . . 3 ⊢ ({𝐴} ⊆ 𝐵 ↔ (𝐴 ∈ V → 𝐴 ∈ 𝐵)) | |
2 | 1 | bicomi 224 | . 2 ⊢ ((𝐴 ∈ V → 𝐴 ∈ 𝐵) ↔ {𝐴} ⊆ 𝐵) |
3 | elex 3509 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
4 | imbibi 391 | . 2 ⊢ (((𝐴 ∈ V → 𝐴 ∈ 𝐵) ↔ {𝐴} ⊆ 𝐵) → (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵))) | |
5 | 2, 3, 4 | mpsyl 68 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-sn 4649 |
This theorem is referenced by: snss 4810 tppreqb 4830 snssi 4833 prssg 4844 snelpwg 5462 relsng 5825 fvimacnvALT 7090 fr3nr 7807 vdwapid1 17022 acsfn 17717 cycsubg2 19250 cycsubg2cl 19251 pgpfac1lem1 20118 pgpfac1lem3a 20120 pgpfac1lem3 20121 pgpfac1lem5 20123 pgpfaclem2 20126 lspsnid 21014 lidldvgen 21367 isneip 23134 elnei 23140 iscnp4 23292 cnpnei 23293 nlly2i 23505 1stckgenlem 23582 flimopn 24004 flimclslem 24013 fclsneii 24046 fcfnei 24064 rrx0el 25451 limcvallem 25926 ellimc2 25932 limcflf 25936 limccnp 25946 limccnp2 25947 limcco 25948 lhop2 26074 plyrem 26365 isppw 27175 lpvtx 29103 h1did 31583 rspsnid 33364 dvdsrspss 33380 unitpidl1 33417 mxidlirred 33465 qsdrngilem 33487 evls1fldgencl 33680 erdszelem8 35166 neibastop2 36327 prnc 38027 proot1mul 43155 uneqsn 43987 mnuprdlem1 44241 islptre 45540 rrxsnicc 46221 sclnbgrelself 47720 |
Copyright terms: Public domain | W3C validator |