Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snssg | Structured version Visualization version GIF version |
Description: The singleton formed on a set is included in a class if and only if the set is an element of that class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 22-Jul-2001.) (Proof shortened by BJ, 1-Jan-2025.) |
Ref | Expression |
---|---|
snssg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssb 4730 | . . 3 ⊢ ({𝐴} ⊆ 𝐵 ↔ (𝐴 ∈ V → 𝐴 ∈ 𝐵)) | |
2 | 1 | bicomi 223 | . 2 ⊢ ((𝐴 ∈ V → 𝐴 ∈ 𝐵) ↔ {𝐴} ⊆ 𝐵) |
3 | elex 3459 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
4 | imbibi 392 | . 2 ⊢ (((𝐴 ∈ V → 𝐴 ∈ 𝐵) ↔ {𝐴} ⊆ 𝐵) → (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵))) | |
5 | 2, 3, 4 | mpsyl 68 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2105 Vcvv 3441 ⊆ wss 3898 {csn 4573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3443 df-in 3905 df-ss 3915 df-sn 4574 |
This theorem is referenced by: snss 4733 tppreqb 4752 snssi 4755 prssg 4766 snelpwg 5387 relsng 5743 fvimacnvALT 6990 fr3nr 7684 vdwapid1 16773 acsfn 17465 cycsubg2 18925 cycsubg2cl 18926 pgpfac1lem1 19772 pgpfac1lem3a 19774 pgpfac1lem3 19775 pgpfac1lem5 19777 pgpfaclem2 19780 lspsnid 20361 lidldvgen 20632 isneip 22362 elnei 22368 iscnp4 22520 cnpnei 22521 nlly2i 22733 1stckgenlem 22810 flimopn 23232 flimclslem 23241 fclsneii 23274 fcfnei 23292 rrx0el 24668 limcvallem 25141 ellimc2 25147 limcflf 25151 limccnp 25161 limccnp2 25162 limcco 25163 lhop2 25285 plyrem 25571 isppw 26369 lpvtx 27727 h1did 30201 rspsnid 31865 erdszelem8 33459 neibastop2 34646 prnc 36338 proot1mul 41295 uneqsn 41962 mnuprdlem1 42219 islptre 43504 rrxsnicc 44185 |
Copyright terms: Public domain | W3C validator |