| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snssg | Structured version Visualization version GIF version | ||
| Description: The singleton formed on a set is included in a class if and only if the set is an element of that class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 22-Jul-2001.) (Proof shortened by BJ, 1-Jan-2025.) |
| Ref | Expression |
|---|---|
| snssg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssb 4734 | . . 3 ⊢ ({𝐴} ⊆ 𝐵 ↔ (𝐴 ∈ V → 𝐴 ∈ 𝐵)) | |
| 2 | 1 | bicomi 224 | . 2 ⊢ ((𝐴 ∈ V → 𝐴 ∈ 𝐵) ↔ {𝐴} ⊆ 𝐵) |
| 3 | elex 3458 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 4 | imbibi 391 | . 2 ⊢ (((𝐴 ∈ V → 𝐴 ∈ 𝐵) ↔ {𝐴} ⊆ 𝐵) → (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵))) | |
| 5 | 2, 3, 4 | mpsyl 68 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 {csn 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-ss 3915 df-sn 4576 |
| This theorem is referenced by: snss 4736 tppreqb 4756 snssi 4759 prssg 4770 snelpwg 5386 relsng 5745 fvimacnvALT 6996 fr3nr 7711 vdwapid1 16889 acsfn 17567 cycsubg2 19124 cycsubg2cl 19125 pgpfac1lem1 19990 pgpfac1lem3a 19992 pgpfac1lem3 19993 pgpfac1lem5 19995 pgpfaclem2 19998 lspsnid 20928 lidldvgen 21273 isneip 23021 elnei 23027 iscnp4 23179 cnpnei 23180 nlly2i 23392 1stckgenlem 23469 flimopn 23891 flimclslem 23900 fclsneii 23933 fcfnei 23951 rrx0el 25326 limcvallem 25800 ellimc2 25806 limcflf 25810 limccnp 25820 limccnp2 25821 limcco 25822 lhop2 25948 plyrem 26241 isppw 27052 lpvtx 29048 h1did 31533 prssad 32511 prssbd 32512 tpssg 32519 rspsnid 33343 dvdsrspss 33359 unitpidl1 33396 mxidlirred 33444 qsdrngilem 33466 evls1fldgencl 33704 erdszelem8 35263 neibastop2 36426 prnc 38127 proot1mul 43311 uneqsn 44142 mnuprdlem1 44389 islptre 45743 rrxsnicc 46422 sclnbgrelself 47972 |
| Copyright terms: Public domain | W3C validator |