![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snssg | Structured version Visualization version GIF version |
Description: The singleton formed on a set is included in a class if and only if the set is an element of that class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 22-Jul-2001.) (Proof shortened by BJ, 1-Jan-2025.) |
Ref | Expression |
---|---|
snssg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssb 4787 | . . 3 ⊢ ({𝐴} ⊆ 𝐵 ↔ (𝐴 ∈ V → 𝐴 ∈ 𝐵)) | |
2 | 1 | bicomi 224 | . 2 ⊢ ((𝐴 ∈ V → 𝐴 ∈ 𝐵) ↔ {𝐴} ⊆ 𝐵) |
3 | elex 3499 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
4 | imbibi 391 | . 2 ⊢ (((𝐴 ∈ V → 𝐴 ∈ 𝐵) ↔ {𝐴} ⊆ 𝐵) → (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵))) | |
5 | 2, 3, 4 | mpsyl 68 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2106 Vcvv 3478 ⊆ wss 3963 {csn 4631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-ss 3980 df-sn 4632 |
This theorem is referenced by: snss 4790 tppreqb 4810 snssi 4813 prssg 4824 snelpwg 5453 relsng 5814 fvimacnvALT 7077 fr3nr 7791 vdwapid1 17009 acsfn 17704 cycsubg2 19241 cycsubg2cl 19242 pgpfac1lem1 20109 pgpfac1lem3a 20111 pgpfac1lem3 20112 pgpfac1lem5 20114 pgpfaclem2 20117 lspsnid 21009 lidldvgen 21362 isneip 23129 elnei 23135 iscnp4 23287 cnpnei 23288 nlly2i 23500 1stckgenlem 23577 flimopn 23999 flimclslem 24008 fclsneii 24041 fcfnei 24059 rrx0el 25446 limcvallem 25921 ellimc2 25927 limcflf 25931 limccnp 25941 limccnp2 25942 limcco 25943 lhop2 26069 plyrem 26362 isppw 27172 lpvtx 29100 h1did 31580 rspsnid 33379 dvdsrspss 33395 unitpidl1 33432 mxidlirred 33480 qsdrngilem 33502 evls1fldgencl 33695 erdszelem8 35183 neibastop2 36344 prnc 38054 proot1mul 43183 uneqsn 44015 mnuprdlem1 44268 islptre 45575 rrxsnicc 46256 sclnbgrelself 47772 |
Copyright terms: Public domain | W3C validator |