Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imp5q Structured version   Visualization version   GIF version

Theorem imp5q 34501
Description: A triple importation inference. (Contributed by Jeff Hankins, 8-Jul-2009.)
Hypothesis
Ref Expression
3imp5.1 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
Assertion
Ref Expression
imp5q ((𝜑𝜓) → ((𝜒𝜃𝜏) → 𝜂))

Proof of Theorem imp5q
StepHypRef Expression
1 3imp5.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
21imp 407 . 2 ((𝜑𝜓) → (𝜒 → (𝜃 → (𝜏𝜂))))
323impd 1347 1 ((𝜑𝜓) → ((𝜒𝜃𝜏) → 𝜂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  elicc3  34506
  Copyright terms: Public domain W3C validator