Proof of Theorem impsingle-step15
Step | Hyp | Ref
| Expression |
1 | | impsingle 1635 |
. 2
⊢ (((𝜃 → 𝜆) → 𝜑) → ((𝜑 → 𝜃) → (𝜒 → 𝜃))) |
2 | | impsingle 1635 |
. . 3
⊢ (((𝜏 → 𝜎) → 𝜌) → ((𝜌 → 𝜏) → (𝜇 → 𝜏))) |
3 | | impsingle 1635 |
. . . 4
⊢
(((((𝜑 → 𝜃) → (𝜒 → 𝜃)) → 𝜂) → ((𝜃 → 𝜆) → 𝜑)) → ((((𝜃 → 𝜆) → 𝜑) → ((𝜑 → 𝜃) → (𝜒 → 𝜃))) → (((𝜑 → 𝜓) → (𝜒 → 𝜃)) → ((𝜑 → 𝜃) → (𝜒 → 𝜃))))) |
4 | | impsingle 1635 |
. . . . . . . . 9
⊢ ((((𝜒 → 𝜃) → 𝜁) → (𝜑 → 𝜓)) → (((𝜑 → 𝜓) → (𝜒 → 𝜃)) → ((𝜑 → 𝜃) → (𝜒 → 𝜃)))) |
5 | | impsingle-step8 1637 |
. . . . . . . . 9
⊢
(((((𝜒 → 𝜃) → 𝜁) → (𝜑 → 𝜓)) → (((𝜑 → 𝜓) → (𝜒 → 𝜃)) → ((𝜑 → 𝜃) → (𝜒 → 𝜃)))) → ((𝜑 → 𝜓) → (((𝜑 → 𝜓) → (𝜒 → 𝜃)) → ((𝜑 → 𝜃) → (𝜒 → 𝜃))))) |
6 | 4, 5 | ax-mp 5 |
. . . . . . . 8
⊢ ((𝜑 → 𝜓) → (((𝜑 → 𝜓) → (𝜒 → 𝜃)) → ((𝜑 → 𝜃) → (𝜒 → 𝜃)))) |
7 | | impsingle 1635 |
. . . . . . . 8
⊢ (((𝜑 → 𝜓) → (((𝜑 → 𝜓) → (𝜒 → 𝜃)) → ((𝜑 → 𝜃) → (𝜒 → 𝜃)))) → (((((𝜑 → 𝜓) → (𝜒 → 𝜃)) → ((𝜑 → 𝜃) → (𝜒 → 𝜃))) → 𝜑) → ((𝜃 → 𝜆) → 𝜑))) |
8 | 6, 7 | ax-mp 5 |
. . . . . . 7
⊢
(((((𝜑 → 𝜓) → (𝜒 → 𝜃)) → ((𝜑 → 𝜃) → (𝜒 → 𝜃))) → 𝜑) → ((𝜃 → 𝜆) → 𝜑)) |
9 | | impsingle 1635 |
. . . . . . 7
⊢
((((((𝜑 → 𝜓) → (𝜒 → 𝜃)) → ((𝜑 → 𝜃) → (𝜒 → 𝜃))) → 𝜑) → ((𝜃 → 𝜆) → 𝜑)) → ((((𝜃 → 𝜆) → 𝜑) → (((𝜑 → 𝜓) → (𝜒 → 𝜃)) → ((𝜑 → 𝜃) → (𝜒 → 𝜃)))) → ((((𝜃 → 𝜆) → 𝜑) → ((𝜑 → 𝜃) → (𝜒 → 𝜃))) → (((𝜑 → 𝜓) → (𝜒 → 𝜃)) → ((𝜑 → 𝜃) → (𝜒 → 𝜃)))))) |
10 | 8, 9 | ax-mp 5 |
. . . . . 6
⊢ ((((𝜃 → 𝜆) → 𝜑) → (((𝜑 → 𝜓) → (𝜒 → 𝜃)) → ((𝜑 → 𝜃) → (𝜒 → 𝜃)))) → ((((𝜃 → 𝜆) → 𝜑) → ((𝜑 → 𝜃) → (𝜒 → 𝜃))) → (((𝜑 → 𝜓) → (𝜒 → 𝜃)) → ((𝜑 → 𝜃) → (𝜒 → 𝜃))))) |
11 | | impsingle 1635 |
. . . . . 6
⊢
(((((𝜃 → 𝜆) → 𝜑) → (((𝜑 → 𝜓) → (𝜒 → 𝜃)) → ((𝜑 → 𝜃) → (𝜒 → 𝜃)))) → ((((𝜃 → 𝜆) → 𝜑) → ((𝜑 → 𝜃) → (𝜒 → 𝜃))) → (((𝜑 → 𝜓) → (𝜒 → 𝜃)) → ((𝜑 → 𝜃) → (𝜒 → 𝜃))))) → ((((((𝜃 → 𝜆) → 𝜑) → ((𝜑 → 𝜃) → (𝜒 → 𝜃))) → (((𝜑 → 𝜓) → (𝜒 → 𝜃)) → ((𝜑 → 𝜃) → (𝜒 → 𝜃)))) → ((𝜃 → 𝜆) → 𝜑)) → ((((𝜑 → 𝜃) → (𝜒 → 𝜃)) → 𝜂) → ((𝜃 → 𝜆) → 𝜑)))) |
12 | 10, 11 | ax-mp 5 |
. . . . 5
⊢
((((((𝜃 → 𝜆) → 𝜑) → ((𝜑 → 𝜃) → (𝜒 → 𝜃))) → (((𝜑 → 𝜓) → (𝜒 → 𝜃)) → ((𝜑 → 𝜃) → (𝜒 → 𝜃)))) → ((𝜃 → 𝜆) → 𝜑)) → ((((𝜑 → 𝜃) → (𝜒 → 𝜃)) → 𝜂) → ((𝜃 → 𝜆) → 𝜑))) |
13 | | impsingle 1635 |
. . . . 5
⊢
(((((((𝜃 → 𝜆) → 𝜑) → ((𝜑 → 𝜃) → (𝜒 → 𝜃))) → (((𝜑 → 𝜓) → (𝜒 → 𝜃)) → ((𝜑 → 𝜃) → (𝜒 → 𝜃)))) → ((𝜃 → 𝜆) → 𝜑)) → ((((𝜑 → 𝜃) → (𝜒 → 𝜃)) → 𝜂) → ((𝜃 → 𝜆) → 𝜑))) → ((((((𝜑 → 𝜃) → (𝜒 → 𝜃)) → 𝜂) → ((𝜃 → 𝜆) → 𝜑)) → ((((𝜃 → 𝜆) → 𝜑) → ((𝜑 → 𝜃) → (𝜒 → 𝜃))) → (((𝜑 → 𝜓) → (𝜒 → 𝜃)) → ((𝜑 → 𝜃) → (𝜒 → 𝜃))))) → ((((𝜏 → 𝜎) → 𝜌) → ((𝜌 → 𝜏) → (𝜇 → 𝜏))) → ((((𝜃 → 𝜆) → 𝜑) → ((𝜑 → 𝜃) → (𝜒 → 𝜃))) → (((𝜑 → 𝜓) → (𝜒 → 𝜃)) → ((𝜑 → 𝜃) → (𝜒 → 𝜃))))))) |
14 | 12, 13 | ax-mp 5 |
. . . 4
⊢
((((((𝜑 → 𝜃) → (𝜒 → 𝜃)) → 𝜂) → ((𝜃 → 𝜆) → 𝜑)) → ((((𝜃 → 𝜆) → 𝜑) → ((𝜑 → 𝜃) → (𝜒 → 𝜃))) → (((𝜑 → 𝜓) → (𝜒 → 𝜃)) → ((𝜑 → 𝜃) → (𝜒 → 𝜃))))) → ((((𝜏 → 𝜎) → 𝜌) → ((𝜌 → 𝜏) → (𝜇 → 𝜏))) → ((((𝜃 → 𝜆) → 𝜑) → ((𝜑 → 𝜃) → (𝜒 → 𝜃))) → (((𝜑 → 𝜓) → (𝜒 → 𝜃)) → ((𝜑 → 𝜃) → (𝜒 → 𝜃)))))) |
15 | 3, 14 | ax-mp 5 |
. . 3
⊢ ((((𝜏 → 𝜎) → 𝜌) → ((𝜌 → 𝜏) → (𝜇 → 𝜏))) → ((((𝜃 → 𝜆) → 𝜑) → ((𝜑 → 𝜃) → (𝜒 → 𝜃))) → (((𝜑 → 𝜓) → (𝜒 → 𝜃)) → ((𝜑 → 𝜃) → (𝜒 → 𝜃))))) |
16 | 2, 15 | ax-mp 5 |
. 2
⊢ ((((𝜃 → 𝜆) → 𝜑) → ((𝜑 → 𝜃) → (𝜒 → 𝜃))) → (((𝜑 → 𝜓) → (𝜒 → 𝜃)) → ((𝜑 → 𝜃) → (𝜒 → 𝜃)))) |
17 | 1, 16 | ax-mp 5 |
1
⊢ (((𝜑 → 𝜓) → (𝜒 → 𝜃)) → ((𝜑 → 𝜃) → (𝜒 → 𝜃))) |