MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  impsingle-step15 Structured version   Visualization version   GIF version

Theorem impsingle-step15 1639
Description: Derivation of impsingle-step15 from ax-mp 5 and impsingle 1635. It is used as a lemma in proofs of imim1 83 and peirce 205 from impsingle 1635. It is Step 15 in Lukasiewicz, where it appears as 'CCCrqCspCCrpCsp' using parenthesis-free prefix notation. (Contributed by Larry Lesyna and Jeffrey P. Machado, 2-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
impsingle-step15 (((𝜑𝜓) → (𝜒𝜃)) → ((𝜑𝜃) → (𝜒𝜃)))

Proof of Theorem impsingle-step15
StepHypRef Expression
1 impsingle 1635 . 2 (((𝜃𝜆) → 𝜑) → ((𝜑𝜃) → (𝜒𝜃)))
2 impsingle 1635 . . 3 (((𝜏𝜎) → 𝜌) → ((𝜌𝜏) → (𝜇𝜏)))
3 impsingle 1635 . . . 4 (((((𝜑𝜃) → (𝜒𝜃)) → 𝜂) → ((𝜃𝜆) → 𝜑)) → ((((𝜃𝜆) → 𝜑) → ((𝜑𝜃) → (𝜒𝜃))) → (((𝜑𝜓) → (𝜒𝜃)) → ((𝜑𝜃) → (𝜒𝜃)))))
4 impsingle 1635 . . . . . . . . 9 ((((𝜒𝜃) → 𝜁) → (𝜑𝜓)) → (((𝜑𝜓) → (𝜒𝜃)) → ((𝜑𝜃) → (𝜒𝜃))))
5 impsingle-step8 1637 . . . . . . . . 9 (((((𝜒𝜃) → 𝜁) → (𝜑𝜓)) → (((𝜑𝜓) → (𝜒𝜃)) → ((𝜑𝜃) → (𝜒𝜃)))) → ((𝜑𝜓) → (((𝜑𝜓) → (𝜒𝜃)) → ((𝜑𝜃) → (𝜒𝜃)))))
64, 5ax-mp 5 . . . . . . . 8 ((𝜑𝜓) → (((𝜑𝜓) → (𝜒𝜃)) → ((𝜑𝜃) → (𝜒𝜃))))
7 impsingle 1635 . . . . . . . 8 (((𝜑𝜓) → (((𝜑𝜓) → (𝜒𝜃)) → ((𝜑𝜃) → (𝜒𝜃)))) → (((((𝜑𝜓) → (𝜒𝜃)) → ((𝜑𝜃) → (𝜒𝜃))) → 𝜑) → ((𝜃𝜆) → 𝜑)))
86, 7ax-mp 5 . . . . . . 7 (((((𝜑𝜓) → (𝜒𝜃)) → ((𝜑𝜃) → (𝜒𝜃))) → 𝜑) → ((𝜃𝜆) → 𝜑))
9 impsingle 1635 . . . . . . 7 ((((((𝜑𝜓) → (𝜒𝜃)) → ((𝜑𝜃) → (𝜒𝜃))) → 𝜑) → ((𝜃𝜆) → 𝜑)) → ((((𝜃𝜆) → 𝜑) → (((𝜑𝜓) → (𝜒𝜃)) → ((𝜑𝜃) → (𝜒𝜃)))) → ((((𝜃𝜆) → 𝜑) → ((𝜑𝜃) → (𝜒𝜃))) → (((𝜑𝜓) → (𝜒𝜃)) → ((𝜑𝜃) → (𝜒𝜃))))))
108, 9ax-mp 5 . . . . . 6 ((((𝜃𝜆) → 𝜑) → (((𝜑𝜓) → (𝜒𝜃)) → ((𝜑𝜃) → (𝜒𝜃)))) → ((((𝜃𝜆) → 𝜑) → ((𝜑𝜃) → (𝜒𝜃))) → (((𝜑𝜓) → (𝜒𝜃)) → ((𝜑𝜃) → (𝜒𝜃)))))
11 impsingle 1635 . . . . . 6 (((((𝜃𝜆) → 𝜑) → (((𝜑𝜓) → (𝜒𝜃)) → ((𝜑𝜃) → (𝜒𝜃)))) → ((((𝜃𝜆) → 𝜑) → ((𝜑𝜃) → (𝜒𝜃))) → (((𝜑𝜓) → (𝜒𝜃)) → ((𝜑𝜃) → (𝜒𝜃))))) → ((((((𝜃𝜆) → 𝜑) → ((𝜑𝜃) → (𝜒𝜃))) → (((𝜑𝜓) → (𝜒𝜃)) → ((𝜑𝜃) → (𝜒𝜃)))) → ((𝜃𝜆) → 𝜑)) → ((((𝜑𝜃) → (𝜒𝜃)) → 𝜂) → ((𝜃𝜆) → 𝜑))))
1210, 11ax-mp 5 . . . . 5 ((((((𝜃𝜆) → 𝜑) → ((𝜑𝜃) → (𝜒𝜃))) → (((𝜑𝜓) → (𝜒𝜃)) → ((𝜑𝜃) → (𝜒𝜃)))) → ((𝜃𝜆) → 𝜑)) → ((((𝜑𝜃) → (𝜒𝜃)) → 𝜂) → ((𝜃𝜆) → 𝜑)))
13 impsingle 1635 . . . . 5 (((((((𝜃𝜆) → 𝜑) → ((𝜑𝜃) → (𝜒𝜃))) → (((𝜑𝜓) → (𝜒𝜃)) → ((𝜑𝜃) → (𝜒𝜃)))) → ((𝜃𝜆) → 𝜑)) → ((((𝜑𝜃) → (𝜒𝜃)) → 𝜂) → ((𝜃𝜆) → 𝜑))) → ((((((𝜑𝜃) → (𝜒𝜃)) → 𝜂) → ((𝜃𝜆) → 𝜑)) → ((((𝜃𝜆) → 𝜑) → ((𝜑𝜃) → (𝜒𝜃))) → (((𝜑𝜓) → (𝜒𝜃)) → ((𝜑𝜃) → (𝜒𝜃))))) → ((((𝜏𝜎) → 𝜌) → ((𝜌𝜏) → (𝜇𝜏))) → ((((𝜃𝜆) → 𝜑) → ((𝜑𝜃) → (𝜒𝜃))) → (((𝜑𝜓) → (𝜒𝜃)) → ((𝜑𝜃) → (𝜒𝜃)))))))
1412, 13ax-mp 5 . . . 4 ((((((𝜑𝜃) → (𝜒𝜃)) → 𝜂) → ((𝜃𝜆) → 𝜑)) → ((((𝜃𝜆) → 𝜑) → ((𝜑𝜃) → (𝜒𝜃))) → (((𝜑𝜓) → (𝜒𝜃)) → ((𝜑𝜃) → (𝜒𝜃))))) → ((((𝜏𝜎) → 𝜌) → ((𝜌𝜏) → (𝜇𝜏))) → ((((𝜃𝜆) → 𝜑) → ((𝜑𝜃) → (𝜒𝜃))) → (((𝜑𝜓) → (𝜒𝜃)) → ((𝜑𝜃) → (𝜒𝜃))))))
153, 14ax-mp 5 . . 3 ((((𝜏𝜎) → 𝜌) → ((𝜌𝜏) → (𝜇𝜏))) → ((((𝜃𝜆) → 𝜑) → ((𝜑𝜃) → (𝜒𝜃))) → (((𝜑𝜓) → (𝜒𝜃)) → ((𝜑𝜃) → (𝜒𝜃)))))
162, 15ax-mp 5 . 2 ((((𝜃𝜆) → 𝜑) → ((𝜑𝜃) → (𝜒𝜃))) → (((𝜑𝜓) → (𝜒𝜃)) → ((𝜑𝜃) → (𝜒𝜃))))
171, 16ax-mp 5 1 (((𝜑𝜓) → (𝜒𝜃)) → ((𝜑𝜃) → (𝜒𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  impsingle-step18  1640  impsingle-step21  1643  impsingle-step25  1645
  Copyright terms: Public domain W3C validator