Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intnanrt Structured version   Visualization version   GIF version

Theorem intnanrt 42193
Description: Introduction of conjunct inside of a contradiction. Would be used in elfvov1 7485. (Contributed by SN, 18-May-2025.)
Assertion
Ref Expression
intnanrt 𝜑 → ¬ (𝜑𝜓))

Proof of Theorem intnanrt
StepHypRef Expression
1 simpl 482 . 2 ((𝜑𝜓) → 𝜑)
21con3i 154 1 𝜑 → ¬ (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator