Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ioin9i8 | Structured version Visualization version GIF version |
Description: Miscellaneous inference creating a biconditional from an implied converse implication. (Contributed by Steven Nguyen, 17-Jul-2022.) |
Ref | Expression |
---|---|
ioin9i8.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
ioin9i8.2 | ⊢ (𝜒 → ¬ 𝜃) |
ioin9i8.3 | ⊢ (𝜓 → 𝜃) |
Ref | Expression |
---|---|
ioin9i8 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioin9i8.3 | . 2 ⊢ (𝜓 → 𝜃) | |
2 | ioin9i8.1 | . . . . 5 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
3 | 2 | ord 861 | . . . 4 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
4 | ioin9i8.2 | . . . 4 ⊢ (𝜒 → ¬ 𝜃) | |
5 | 3, 4 | syl6 35 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜃)) |
6 | 5 | con4d 115 | . 2 ⊢ (𝜑 → (𝜃 → 𝜓)) |
7 | 1, 6 | impbid2 229 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-or 845 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |