|   | Mathbox for Steven Nguyen | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ioin9i8 | Structured version Visualization version GIF version | ||
| Description: Miscellaneous inference creating a biconditional from an implied converse implication. (Contributed by Steven Nguyen, 17-Jul-2022.) | 
| Ref | Expression | 
|---|---|
| ioin9i8.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | 
| ioin9i8.2 | ⊢ (𝜒 → ¬ 𝜃) | 
| ioin9i8.3 | ⊢ (𝜓 → 𝜃) | 
| Ref | Expression | 
|---|---|
| ioin9i8 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ioin9i8.3 | . 2 ⊢ (𝜓 → 𝜃) | |
| 2 | ioin9i8.1 | . . . . 5 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
| 3 | 2 | ord 865 | . . . 4 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | 
| 4 | ioin9i8.2 | . . . 4 ⊢ (𝜒 → ¬ 𝜃) | |
| 5 | 3, 4 | syl6 35 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜃)) | 
| 6 | 5 | con4d 115 | . 2 ⊢ (𝜑 → (𝜃 → 𝜓)) | 
| 7 | 1, 6 | impbid2 226 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 848 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-or 849 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |