Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioin9i8 Structured version   Visualization version   GIF version

Theorem ioin9i8 40101
Description: Miscellaneous inference creating a biconditional from an implied converse implication. (Contributed by Steven Nguyen, 17-Jul-2022.)
Hypotheses
Ref Expression
ioin9i8.1 (𝜑 → (𝜓𝜒))
ioin9i8.2 (𝜒 → ¬ 𝜃)
ioin9i8.3 (𝜓𝜃)
Assertion
Ref Expression
ioin9i8 (𝜑 → (𝜓𝜃))

Proof of Theorem ioin9i8
StepHypRef Expression
1 ioin9i8.3 . 2 (𝜓𝜃)
2 ioin9i8.1 . . . . 5 (𝜑 → (𝜓𝜒))
32ord 860 . . . 4 (𝜑 → (¬ 𝜓𝜒))
4 ioin9i8.2 . . . 4 (𝜒 → ¬ 𝜃)
53, 4syl6 35 . . 3 (𝜑 → (¬ 𝜓 → ¬ 𝜃))
65con4d 115 . 2 (𝜑 → (𝜃𝜓))
71, 6impbid2 225 1 (𝜑 → (𝜓𝜃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wo 843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 844
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator