| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfvov1 | Structured version Visualization version GIF version | ||
| Description: Utility theorem: reverse closure for any operation that results in a function. (Contributed by SN, 18-May-2025.) |
| Ref | Expression |
|---|---|
| elfvov1.o | ⊢ Rel dom 𝑂 |
| elfvov1.s | ⊢ 𝑆 = (𝐼𝑂𝑅) |
| elfvov1.x | ⊢ (𝜑 → 𝑋 ∈ (𝑆‘𝑌)) |
| Ref | Expression |
|---|---|
| elfvov1 | ⊢ (𝜑 → 𝐼 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvov1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑆‘𝑌)) | |
| 2 | n0i 4289 | . . 3 ⊢ (𝑋 ∈ (𝑆‘𝑌) → ¬ (𝑆‘𝑌) = ∅) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → ¬ (𝑆‘𝑌) = ∅) |
| 4 | elfvov1.s | . . . . 5 ⊢ 𝑆 = (𝐼𝑂𝑅) | |
| 5 | elfvov1.o | . . . . . 6 ⊢ Rel dom 𝑂 | |
| 6 | 5 | ovprc1 7391 | . . . . 5 ⊢ (¬ 𝐼 ∈ V → (𝐼𝑂𝑅) = ∅) |
| 7 | 4, 6 | eqtrid 2778 | . . . 4 ⊢ (¬ 𝐼 ∈ V → 𝑆 = ∅) |
| 8 | 7 | fveq1d 6830 | . . 3 ⊢ (¬ 𝐼 ∈ V → (𝑆‘𝑌) = (∅‘𝑌)) |
| 9 | 0fv 6869 | . . 3 ⊢ (∅‘𝑌) = ∅ | |
| 10 | 8, 9 | eqtrdi 2782 | . 2 ⊢ (¬ 𝐼 ∈ V → (𝑆‘𝑌) = ∅) |
| 11 | 3, 10 | nsyl2 141 | 1 ⊢ (𝜑 → 𝐼 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4282 dom cdm 5619 Rel wrel 5624 ‘cfv 6487 (class class class)co 7352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-dm 5629 df-iota 6443 df-fv 6495 df-ov 7355 |
| This theorem is referenced by: ismhp 22061 mhprcl 22064 mhpmulcl 22070 mhppwdeg 22071 mhpaddcl 22072 mhpinvcl 22073 mhpvscacl 22075 mhpind 42693 evlsmhpvvval 42694 mhphf2 42697 mhphf3 42698 |
| Copyright terms: Public domain | W3C validator |