MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfvov1 Structured version   Visualization version   GIF version

Theorem elfvov1 7429
Description: Utility theorem: reverse closure for any operation that results in a function. (Contributed by SN, 18-May-2025.)
Hypotheses
Ref Expression
elfvov1.o Rel dom 𝑂
elfvov1.s 𝑆 = (𝐼𝑂𝑅)
elfvov1.x (𝜑𝑋 ∈ (𝑆𝑌))
Assertion
Ref Expression
elfvov1 (𝜑𝐼 ∈ V)

Proof of Theorem elfvov1
StepHypRef Expression
1 elfvov1.x . . 3 (𝜑𝑋 ∈ (𝑆𝑌))
2 n0i 4303 . . 3 (𝑋 ∈ (𝑆𝑌) → ¬ (𝑆𝑌) = ∅)
31, 2syl 17 . 2 (𝜑 → ¬ (𝑆𝑌) = ∅)
4 elfvov1.s . . . . 5 𝑆 = (𝐼𝑂𝑅)
5 elfvov1.o . . . . . 6 Rel dom 𝑂
65ovprc1 7426 . . . . 5 𝐼 ∈ V → (𝐼𝑂𝑅) = ∅)
74, 6eqtrid 2776 . . . 4 𝐼 ∈ V → 𝑆 = ∅)
87fveq1d 6860 . . 3 𝐼 ∈ V → (𝑆𝑌) = (∅‘𝑌))
9 0fv 6902 . . 3 (∅‘𝑌) = ∅
108, 9eqtrdi 2780 . 2 𝐼 ∈ V → (𝑆𝑌) = ∅)
113, 10nsyl2 141 1 (𝜑𝐼 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  c0 4296  dom cdm 5638  Rel wrel 5643  cfv 6511  (class class class)co 7387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-dm 5648  df-iota 6464  df-fv 6519  df-ov 7390
This theorem is referenced by:  ismhp  22027  mhprcl  22030  mhpmulcl  22036  mhppwdeg  22037  mhpaddcl  22038  mhpinvcl  22039  mhpvscacl  22041  mhpind  42582  evlsmhpvvval  42583  mhphf2  42586  mhphf3  42587
  Copyright terms: Public domain W3C validator