MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfvov1 Structured version   Visualization version   GIF version

Theorem elfvov1 7383
Description: Utility theorem: reverse closure for any operation that results in a function. (Contributed by SN, 18-May-2025.)
Hypotheses
Ref Expression
elfvov1.o Rel dom 𝑂
elfvov1.s 𝑆 = (𝐼𝑂𝑅)
elfvov1.x (𝜑𝑋 ∈ (𝑆𝑌))
Assertion
Ref Expression
elfvov1 (𝜑𝐼 ∈ V)

Proof of Theorem elfvov1
StepHypRef Expression
1 elfvov1.x . . 3 (𝜑𝑋 ∈ (𝑆𝑌))
2 n0i 4288 . . 3 (𝑋 ∈ (𝑆𝑌) → ¬ (𝑆𝑌) = ∅)
31, 2syl 17 . 2 (𝜑 → ¬ (𝑆𝑌) = ∅)
4 elfvov1.s . . . . 5 𝑆 = (𝐼𝑂𝑅)
5 elfvov1.o . . . . . 6 Rel dom 𝑂
65ovprc1 7380 . . . . 5 𝐼 ∈ V → (𝐼𝑂𝑅) = ∅)
74, 6eqtrid 2777 . . . 4 𝐼 ∈ V → 𝑆 = ∅)
87fveq1d 6819 . . 3 𝐼 ∈ V → (𝑆𝑌) = (∅‘𝑌))
9 0fv 6858 . . 3 (∅‘𝑌) = ∅
108, 9eqtrdi 2781 . 2 𝐼 ∈ V → (𝑆𝑌) = ∅)
113, 10nsyl2 141 1 (𝜑𝐼 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2110  Vcvv 3434  c0 4281  dom cdm 5614  Rel wrel 5619  cfv 6477  (class class class)co 7341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-dm 5624  df-iota 6433  df-fv 6485  df-ov 7344
This theorem is referenced by:  ismhp  22048  mhprcl  22051  mhpmulcl  22057  mhppwdeg  22058  mhpaddcl  22059  mhpinvcl  22060  mhpvscacl  22062  mhpind  42606  evlsmhpvvval  42607  mhphf2  42610  mhphf3  42611
  Copyright terms: Public domain W3C validator