| Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mdandyv3 | Structured version Visualization version GIF version | ||
| Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| Ref | Expression |
|---|---|
| mdandyv3.1 | ⊢ (𝜑 ↔ ⊥) |
| mdandyv3.2 | ⊢ (𝜓 ↔ ⊤) |
| mdandyv3.3 | ⊢ (𝜒 ↔ ⊤) |
| mdandyv3.4 | ⊢ (𝜃 ↔ ⊤) |
| mdandyv3.5 | ⊢ (𝜏 ↔ ⊥) |
| mdandyv3.6 | ⊢ (𝜂 ↔ ⊥) |
| Ref | Expression |
|---|---|
| mdandyv3 | ⊢ ((((𝜒 ↔ 𝜓) ∧ (𝜃 ↔ 𝜓)) ∧ (𝜏 ↔ 𝜑)) ∧ (𝜂 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdandyv3.3 | . . . . 5 ⊢ (𝜒 ↔ ⊤) | |
| 2 | mdandyv3.2 | . . . . 5 ⊢ (𝜓 ↔ ⊤) | |
| 3 | 1, 2 | bothtbothsame 46857 | . . . 4 ⊢ (𝜒 ↔ 𝜓) |
| 4 | mdandyv3.4 | . . . . 5 ⊢ (𝜃 ↔ ⊤) | |
| 5 | 4, 2 | bothtbothsame 46857 | . . . 4 ⊢ (𝜃 ↔ 𝜓) |
| 6 | 3, 5 | pm3.2i 470 | . . 3 ⊢ ((𝜒 ↔ 𝜓) ∧ (𝜃 ↔ 𝜓)) |
| 7 | mdandyv3.5 | . . . 4 ⊢ (𝜏 ↔ ⊥) | |
| 8 | mdandyv3.1 | . . . 4 ⊢ (𝜑 ↔ ⊥) | |
| 9 | 7, 8 | bothfbothsame 46858 | . . 3 ⊢ (𝜏 ↔ 𝜑) |
| 10 | 6, 9 | pm3.2i 470 | . 2 ⊢ (((𝜒 ↔ 𝜓) ∧ (𝜃 ↔ 𝜓)) ∧ (𝜏 ↔ 𝜑)) |
| 11 | mdandyv3.6 | . . 3 ⊢ (𝜂 ↔ ⊥) | |
| 12 | 11, 8 | bothfbothsame 46858 | . 2 ⊢ (𝜂 ↔ 𝜑) |
| 13 | 10, 12 | pm3.2i 470 | 1 ⊢ ((((𝜒 ↔ 𝜓) ∧ (𝜃 ↔ 𝜓)) ∧ (𝜏 ↔ 𝜑)) ∧ (𝜂 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ⊤wtru 1540 ⊥wfal 1551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |