Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bothfbothsame Structured version   Visualization version   GIF version

Theorem bothfbothsame 47024
Description: Given both a, b are equivalent to , there exists a proof for a is the same as b. (Contributed by Jarvin Udandy, 31-Aug-2016.)
Hypotheses
Ref Expression
bothfbothsame.1 (𝜑 ↔ ⊥)
bothfbothsame.2 (𝜓 ↔ ⊥)
Assertion
Ref Expression
bothfbothsame (𝜑𝜓)

Proof of Theorem bothfbothsame
StepHypRef Expression
1 bothfbothsame.1 . 2 (𝜑 ↔ ⊥)
2 bothfbothsame.2 . 2 (𝜓 ↔ ⊥)
31, 2bitr4i 278 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wfal 1553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  mdandyv0  47073  mdandyv1  47074  mdandyv2  47075  mdandyv3  47076  mdandyv4  47077  mdandyv5  47078  mdandyv6  47079  mdandyv7  47080  mdandyv8  47081  mdandyv9  47082  mdandyv10  47083  mdandyv11  47084  mdandyv12  47085  mdandyv13  47086  mdandyv14  47087  dandysum2p2e4  47122
  Copyright terms: Public domain W3C validator