![]() |
Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bothfbothsame | Structured version Visualization version GIF version |
Description: Given both a, b are equivalent to ⊥, there exists a proof for a is the same as b. (Contributed by Jarvin Udandy, 31-Aug-2016.) |
Ref | Expression |
---|---|
bothfbothsame.1 | ⊢ (𝜑 ↔ ⊥) |
bothfbothsame.2 | ⊢ (𝜓 ↔ ⊥) |
Ref | Expression |
---|---|
bothfbothsame | ⊢ (𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bothfbothsame.1 | . 2 ⊢ (𝜑 ↔ ⊥) | |
2 | bothfbothsame.2 | . 2 ⊢ (𝜓 ↔ ⊥) | |
3 | 1, 2 | bitr4i 278 | 1 ⊢ (𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ⊥wfal 1546 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: mdandyv0 46331 mdandyv1 46332 mdandyv2 46333 mdandyv3 46334 mdandyv4 46335 mdandyv5 46336 mdandyv6 46337 mdandyv7 46338 mdandyv8 46339 mdandyv9 46340 mdandyv10 46341 mdandyv11 46342 mdandyv12 46343 mdandyv13 46344 mdandyv14 46345 dandysum2p2e4 46380 |
Copyright terms: Public domain | W3C validator |