![]() |
Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bothfbothsame | Structured version Visualization version GIF version |
Description: Given both a, b are equivalent to ⊥, there exists a proof for a is the same as b. (Contributed by Jarvin Udandy, 31-Aug-2016.) |
Ref | Expression |
---|---|
bothfbothsame.1 | ⊢ (𝜑 ↔ ⊥) |
bothfbothsame.2 | ⊢ (𝜓 ↔ ⊥) |
Ref | Expression |
---|---|
bothfbothsame | ⊢ (𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bothfbothsame.1 | . 2 ⊢ (𝜑 ↔ ⊥) | |
2 | bothfbothsame.2 | . 2 ⊢ (𝜓 ↔ ⊥) | |
3 | 1, 2 | bitr4i 277 | 1 ⊢ (𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ⊥wfal 1552 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: mdandyv0 45959 mdandyv1 45960 mdandyv2 45961 mdandyv3 45962 mdandyv4 45963 mdandyv5 45964 mdandyv6 45965 mdandyv7 45966 mdandyv8 45967 mdandyv9 45968 mdandyv10 45969 mdandyv11 45970 mdandyv12 45971 mdandyv13 45972 mdandyv14 45973 dandysum2p2e4 46008 |
Copyright terms: Public domain | W3C validator |