Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bothfbothsame Structured version   Visualization version   GIF version

Theorem bothfbothsame 46930
Description: Given both a, b are equivalent to , there exists a proof for a is the same as b. (Contributed by Jarvin Udandy, 31-Aug-2016.)
Hypotheses
Ref Expression
bothfbothsame.1 (𝜑 ↔ ⊥)
bothfbothsame.2 (𝜓 ↔ ⊥)
Assertion
Ref Expression
bothfbothsame (𝜑𝜓)

Proof of Theorem bothfbothsame
StepHypRef Expression
1 bothfbothsame.1 . 2 (𝜑 ↔ ⊥)
2 bothfbothsame.2 . 2 (𝜓 ↔ ⊥)
31, 2bitr4i 278 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wfal 1553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  mdandyv0  46979  mdandyv1  46980  mdandyv2  46981  mdandyv3  46982  mdandyv4  46983  mdandyv5  46984  mdandyv6  46985  mdandyv7  46986  mdandyv8  46987  mdandyv9  46988  mdandyv10  46989  mdandyv11  46990  mdandyv12  46991  mdandyv13  46992  mdandyv14  46993  dandysum2p2e4  47028
  Copyright terms: Public domain W3C validator