Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bothfbothsame Structured version   Visualization version   GIF version

Theorem bothfbothsame 44282
Description: Given both a, b are equivalent to , there exists a proof for a is the same as b. (Contributed by Jarvin Udandy, 31-Aug-2016.)
Hypotheses
Ref Expression
bothfbothsame.1 (𝜑 ↔ ⊥)
bothfbothsame.2 (𝜓 ↔ ⊥)
Assertion
Ref Expression
bothfbothsame (𝜑𝜓)

Proof of Theorem bothfbothsame
StepHypRef Expression
1 bothfbothsame.1 . 2 (𝜑 ↔ ⊥)
2 bothfbothsame.2 . 2 (𝜓 ↔ ⊥)
31, 2bitr4i 277 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wfal 1551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  mdandyv0  44331  mdandyv1  44332  mdandyv2  44333  mdandyv3  44334  mdandyv4  44335  mdandyv5  44336  mdandyv6  44337  mdandyv7  44338  mdandyv8  44339  mdandyv9  44340  mdandyv10  44341  mdandyv11  44342  mdandyv12  44343  mdandyv13  44344  mdandyv14  44345  dandysum2p2e4  44380
  Copyright terms: Public domain W3C validator