Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bothfbothsame | Structured version Visualization version GIF version |
Description: Given both a, b are equivalent to ⊥, there exists a proof for a is the same as b. (Contributed by Jarvin Udandy, 31-Aug-2016.) |
Ref | Expression |
---|---|
bothfbothsame.1 | ⊢ (𝜑 ↔ ⊥) |
bothfbothsame.2 | ⊢ (𝜓 ↔ ⊥) |
Ref | Expression |
---|---|
bothfbothsame | ⊢ (𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bothfbothsame.1 | . 2 ⊢ (𝜑 ↔ ⊥) | |
2 | bothfbothsame.2 | . 2 ⊢ (𝜓 ↔ ⊥) | |
3 | 1, 2 | bitr4i 277 | 1 ⊢ (𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ⊥wfal 1551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: mdandyv0 44331 mdandyv1 44332 mdandyv2 44333 mdandyv3 44334 mdandyv4 44335 mdandyv5 44336 mdandyv6 44337 mdandyv7 44338 mdandyv8 44339 mdandyv9 44340 mdandyv10 44341 mdandyv11 44342 mdandyv12 44343 mdandyv13 44344 mdandyv14 44345 dandysum2p2e4 44380 |
Copyright terms: Public domain | W3C validator |