Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bothfbothsame Structured version   Visualization version   GIF version

Theorem bothfbothsame 46858
Description: Given both a, b are equivalent to , there exists a proof for a is the same as b. (Contributed by Jarvin Udandy, 31-Aug-2016.)
Hypotheses
Ref Expression
bothfbothsame.1 (𝜑 ↔ ⊥)
bothfbothsame.2 (𝜓 ↔ ⊥)
Assertion
Ref Expression
bothfbothsame (𝜑𝜓)

Proof of Theorem bothfbothsame
StepHypRef Expression
1 bothfbothsame.1 . 2 (𝜑 ↔ ⊥)
2 bothfbothsame.2 . 2 (𝜓 ↔ ⊥)
31, 2bitr4i 278 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wfal 1551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  mdandyv0  46907  mdandyv1  46908  mdandyv2  46909  mdandyv3  46910  mdandyv4  46911  mdandyv5  46912  mdandyv6  46913  mdandyv7  46914  mdandyv8  46915  mdandyv9  46916  mdandyv10  46917  mdandyv11  46918  mdandyv12  46919  mdandyv13  46920  mdandyv14  46921  dandysum2p2e4  46956
  Copyright terms: Public domain W3C validator