Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bothfbothsame Structured version   Visualization version   GIF version

Theorem bothfbothsame 45910
Description: Given both a, b are equivalent to , there exists a proof for a is the same as b. (Contributed by Jarvin Udandy, 31-Aug-2016.)
Hypotheses
Ref Expression
bothfbothsame.1 (𝜑 ↔ ⊥)
bothfbothsame.2 (𝜓 ↔ ⊥)
Assertion
Ref Expression
bothfbothsame (𝜑𝜓)

Proof of Theorem bothfbothsame
StepHypRef Expression
1 bothfbothsame.1 . 2 (𝜑 ↔ ⊥)
2 bothfbothsame.2 . 2 (𝜓 ↔ ⊥)
31, 2bitr4i 277 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wfal 1552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  mdandyv0  45959  mdandyv1  45960  mdandyv2  45961  mdandyv3  45962  mdandyv4  45963  mdandyv5  45964  mdandyv6  45965  mdandyv7  45966  mdandyv8  45967  mdandyv9  45968  mdandyv10  45969  mdandyv11  45970  mdandyv12  45971  mdandyv13  45972  mdandyv14  45973  dandysum2p2e4  46008
  Copyright terms: Public domain W3C validator