Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bothtbothsame | Structured version Visualization version GIF version |
Description: Given both a, b are equivalent to ⊤, there exists a proof for a is the same as b. (Contributed by Jarvin Udandy, 31-Aug-2016.) |
Ref | Expression |
---|---|
bothtbothsame.1 | ⊢ (𝜑 ↔ ⊤) |
bothtbothsame.2 | ⊢ (𝜓 ↔ ⊤) |
Ref | Expression |
---|---|
bothtbothsame | ⊢ (𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bothtbothsame.1 | . 2 ⊢ (𝜑 ↔ ⊤) | |
2 | bothtbothsame.2 | . 2 ⊢ (𝜓 ↔ ⊤) | |
3 | 1, 2 | bitr4i 281 | 1 ⊢ (𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ⊤wtru 1543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 |
This theorem is referenced by: mdandyv1 43984 mdandyv2 43985 mdandyv3 43986 mdandyv4 43987 mdandyv5 43988 mdandyv6 43989 mdandyv7 43990 mdandyv8 43991 mdandyv9 43992 mdandyv10 43993 mdandyv11 43994 mdandyv12 43995 mdandyv13 43996 mdandyv14 43997 mdandyv15 43998 dandysum2p2e4 44032 |
Copyright terms: Public domain | W3C validator |