| Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bothtbothsame | Structured version Visualization version GIF version | ||
| Description: Given both a, b are equivalent to ⊤, there exists a proof for a is the same as b. (Contributed by Jarvin Udandy, 31-Aug-2016.) |
| Ref | Expression |
|---|---|
| bothtbothsame.1 | ⊢ (𝜑 ↔ ⊤) |
| bothtbothsame.2 | ⊢ (𝜓 ↔ ⊤) |
| Ref | Expression |
|---|---|
| bothtbothsame | ⊢ (𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bothtbothsame.1 | . 2 ⊢ (𝜑 ↔ ⊤) | |
| 2 | bothtbothsame.2 | . 2 ⊢ (𝜓 ↔ ⊤) | |
| 3 | 1, 2 | bitr4i 278 | 1 ⊢ (𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ⊤wtru 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: mdandyv1 46921 mdandyv2 46922 mdandyv3 46923 mdandyv4 46924 mdandyv5 46925 mdandyv6 46926 mdandyv7 46927 mdandyv8 46928 mdandyv9 46929 mdandyv10 46930 mdandyv11 46931 mdandyv12 46932 mdandyv13 46933 mdandyv14 46934 mdandyv15 46935 dandysum2p2e4 46969 |
| Copyright terms: Public domain | W3C validator |