![]() |
Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bothtbothsame | Structured version Visualization version GIF version |
Description: Given both a, b are equivalent to ⊤, there exists a proof for a is the same as b. (Contributed by Jarvin Udandy, 31-Aug-2016.) |
Ref | Expression |
---|---|
bothtbothsame.1 | ⊢ (𝜑 ↔ ⊤) |
bothtbothsame.2 | ⊢ (𝜓 ↔ ⊤) |
Ref | Expression |
---|---|
bothtbothsame | ⊢ (𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bothtbothsame.1 | . 2 ⊢ (𝜑 ↔ ⊤) | |
2 | bothtbothsame.2 | . 2 ⊢ (𝜓 ↔ ⊤) | |
3 | 1, 2 | bitr4i 278 | 1 ⊢ (𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ⊤wtru 1543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: mdandyv1 45660 mdandyv2 45661 mdandyv3 45662 mdandyv4 45663 mdandyv5 45664 mdandyv6 45665 mdandyv7 45666 mdandyv8 45667 mdandyv9 45668 mdandyv10 45669 mdandyv11 45670 mdandyv12 45671 mdandyv13 45672 mdandyv14 45673 mdandyv15 45674 dandysum2p2e4 45708 |
Copyright terms: Public domain | W3C validator |