Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bothtbothsame | Structured version Visualization version GIF version |
Description: Given both a, b are equivalent to ⊤, there exists a proof for a is the same as b. (Contributed by Jarvin Udandy, 31-Aug-2016.) |
Ref | Expression |
---|---|
bothtbothsame.1 | ⊢ (𝜑 ↔ ⊤) |
bothtbothsame.2 | ⊢ (𝜓 ↔ ⊤) |
Ref | Expression |
---|---|
bothtbothsame | ⊢ (𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bothtbothsame.1 | . 2 ⊢ (𝜑 ↔ ⊤) | |
2 | bothtbothsame.2 | . 2 ⊢ (𝜓 ↔ ⊤) | |
3 | 1, 2 | bitr4i 277 | 1 ⊢ (𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ⊤wtru 1542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: mdandyv1 44396 mdandyv2 44397 mdandyv3 44398 mdandyv4 44399 mdandyv5 44400 mdandyv6 44401 mdandyv7 44402 mdandyv8 44403 mdandyv9 44404 mdandyv10 44405 mdandyv11 44406 mdandyv12 44407 mdandyv13 44408 mdandyv14 44409 mdandyv15 44410 dandysum2p2e4 44444 |
Copyright terms: Public domain | W3C validator |