Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bothtbothsame Structured version   Visualization version   GIF version

Theorem bothtbothsame 46340
Description: Given both a, b are equivalent to , there exists a proof for a is the same as b. (Contributed by Jarvin Udandy, 31-Aug-2016.)
Hypotheses
Ref Expression
bothtbothsame.1 (𝜑 ↔ ⊤)
bothtbothsame.2 (𝜓 ↔ ⊤)
Assertion
Ref Expression
bothtbothsame (𝜑𝜓)

Proof of Theorem bothtbothsame
StepHypRef Expression
1 bothtbothsame.1 . 2 (𝜑 ↔ ⊤)
2 bothtbothsame.2 . 2 (𝜓 ↔ ⊤)
31, 2bitr4i 277 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wtru 1534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  mdandyv1  46391  mdandyv2  46392  mdandyv3  46393  mdandyv4  46394  mdandyv5  46395  mdandyv6  46396  mdandyv7  46397  mdandyv8  46398  mdandyv9  46399  mdandyv10  46400  mdandyv11  46401  mdandyv12  46402  mdandyv13  46403  mdandyv14  46404  mdandyv15  46405  dandysum2p2e4  46439
  Copyright terms: Public domain W3C validator