![]() |
Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bothtbothsame | Structured version Visualization version GIF version |
Description: Given both a, b are equivalent to ⊤, there exists a proof for a is the same as b. (Contributed by Jarvin Udandy, 31-Aug-2016.) |
Ref | Expression |
---|---|
bothtbothsame.1 | ⊢ (𝜑 ↔ ⊤) |
bothtbothsame.2 | ⊢ (𝜓 ↔ ⊤) |
Ref | Expression |
---|---|
bothtbothsame | ⊢ (𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bothtbothsame.1 | . 2 ⊢ (𝜑 ↔ ⊤) | |
2 | bothtbothsame.2 | . 2 ⊢ (𝜓 ↔ ⊤) | |
3 | 1, 2 | bitr4i 277 | 1 ⊢ (𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ⊤wtru 1534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: mdandyv1 46391 mdandyv2 46392 mdandyv3 46393 mdandyv4 46394 mdandyv5 46395 mdandyv6 46396 mdandyv7 46397 mdandyv8 46398 mdandyv9 46399 mdandyv10 46400 mdandyv11 46401 mdandyv12 46402 mdandyv13 46403 mdandyv14 46404 mdandyv15 46405 dandysum2p2e4 46439 |
Copyright terms: Public domain | W3C validator |