| Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bothtbothsame | Structured version Visualization version GIF version | ||
| Description: Given both a, b are equivalent to ⊤, there exists a proof for a is the same as b. (Contributed by Jarvin Udandy, 31-Aug-2016.) |
| Ref | Expression |
|---|---|
| bothtbothsame.1 | ⊢ (𝜑 ↔ ⊤) |
| bothtbothsame.2 | ⊢ (𝜓 ↔ ⊤) |
| Ref | Expression |
|---|---|
| bothtbothsame | ⊢ (𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bothtbothsame.1 | . 2 ⊢ (𝜑 ↔ ⊤) | |
| 2 | bothtbothsame.2 | . 2 ⊢ (𝜓 ↔ ⊤) | |
| 3 | 1, 2 | bitr4i 278 | 1 ⊢ (𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ⊤wtru 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: mdandyv1 46935 mdandyv2 46936 mdandyv3 46937 mdandyv4 46938 mdandyv5 46939 mdandyv6 46940 mdandyv7 46941 mdandyv8 46942 mdandyv9 46943 mdandyv10 46944 mdandyv11 46945 mdandyv12 46946 mdandyv13 46947 mdandyv14 46948 mdandyv15 46949 dandysum2p2e4 46983 |
| Copyright terms: Public domain | W3C validator |