| Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bothtbothsame | Structured version Visualization version GIF version | ||
| Description: Given both a, b are equivalent to ⊤, there exists a proof for a is the same as b. (Contributed by Jarvin Udandy, 31-Aug-2016.) |
| Ref | Expression |
|---|---|
| bothtbothsame.1 | ⊢ (𝜑 ↔ ⊤) |
| bothtbothsame.2 | ⊢ (𝜓 ↔ ⊤) |
| Ref | Expression |
|---|---|
| bothtbothsame | ⊢ (𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bothtbothsame.1 | . 2 ⊢ (𝜑 ↔ ⊤) | |
| 2 | bothtbothsame.2 | . 2 ⊢ (𝜓 ↔ ⊤) | |
| 3 | 1, 2 | bitr4i 278 | 1 ⊢ (𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ⊤wtru 1542 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: mdandyv1 47074 mdandyv2 47075 mdandyv3 47076 mdandyv4 47077 mdandyv5 47078 mdandyv6 47079 mdandyv7 47080 mdandyv8 47081 mdandyv9 47082 mdandyv10 47083 mdandyv11 47084 mdandyv12 47085 mdandyv13 47086 mdandyv14 47087 mdandyv15 47088 dandysum2p2e4 47122 |
| Copyright terms: Public domain | W3C validator |