Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bothtbothsame Structured version   Visualization version   GIF version

Theorem bothtbothsame 46870
Description: Given both a, b are equivalent to , there exists a proof for a is the same as b. (Contributed by Jarvin Udandy, 31-Aug-2016.)
Hypotheses
Ref Expression
bothtbothsame.1 (𝜑 ↔ ⊤)
bothtbothsame.2 (𝜓 ↔ ⊤)
Assertion
Ref Expression
bothtbothsame (𝜑𝜓)

Proof of Theorem bothtbothsame
StepHypRef Expression
1 bothtbothsame.1 . 2 (𝜑 ↔ ⊤)
2 bothtbothsame.2 . 2 (𝜓 ↔ ⊤)
31, 2bitr4i 278 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wtru 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  mdandyv1  46921  mdandyv2  46922  mdandyv3  46923  mdandyv4  46924  mdandyv5  46925  mdandyv6  46926  mdandyv7  46927  mdandyv8  46928  mdandyv9  46929  mdandyv10  46930  mdandyv11  46931  mdandyv12  46932  mdandyv13  46933  mdandyv14  46934  mdandyv15  46935  dandysum2p2e4  46969
  Copyright terms: Public domain W3C validator