Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bothtbothsame | Structured version Visualization version GIF version |
Description: Given both a, b are equivalent to ⊤, there exists a proof for a is the same as b. (Contributed by Jarvin Udandy, 31-Aug-2016.) |
Ref | Expression |
---|---|
bothtbothsame.1 | ⊢ (𝜑 ↔ ⊤) |
bothtbothsame.2 | ⊢ (𝜓 ↔ ⊤) |
Ref | Expression |
---|---|
bothtbothsame | ⊢ (𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bothtbothsame.1 | . 2 ⊢ (𝜑 ↔ ⊤) | |
2 | bothtbothsame.2 | . 2 ⊢ (𝜓 ↔ ⊤) | |
3 | 1, 2 | bitr4i 278 | 1 ⊢ (𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ⊤wtru 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: mdandyv1 44689 mdandyv2 44690 mdandyv3 44691 mdandyv4 44692 mdandyv5 44693 mdandyv6 44694 mdandyv7 44695 mdandyv8 44696 mdandyv9 44697 mdandyv10 44698 mdandyv11 44699 mdandyv12 44700 mdandyv13 44701 mdandyv14 44702 mdandyv15 44703 dandysum2p2e4 44737 |
Copyright terms: Public domain | W3C validator |