Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bothtbothsame Structured version   Visualization version   GIF version

Theorem bothtbothsame 43933
Description: Given both a, b are equivalent to , there exists a proof for a is the same as b. (Contributed by Jarvin Udandy, 31-Aug-2016.)
Hypotheses
Ref Expression
bothtbothsame.1 (𝜑 ↔ ⊤)
bothtbothsame.2 (𝜓 ↔ ⊤)
Assertion
Ref Expression
bothtbothsame (𝜑𝜓)

Proof of Theorem bothtbothsame
StepHypRef Expression
1 bothtbothsame.1 . 2 (𝜑 ↔ ⊤)
2 bothtbothsame.2 . 2 (𝜓 ↔ ⊤)
31, 2bitr4i 281 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wtru 1543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210
This theorem is referenced by:  mdandyv1  43984  mdandyv2  43985  mdandyv3  43986  mdandyv4  43987  mdandyv5  43988  mdandyv6  43989  mdandyv7  43990  mdandyv8  43991  mdandyv9  43992  mdandyv10  43993  mdandyv11  43994  mdandyv12  43995  mdandyv13  43996  mdandyv14  43997  mdandyv15  43998  dandysum2p2e4  44032
  Copyright terms: Public domain W3C validator