Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bothtbothsame Structured version   Visualization version   GIF version

Theorem bothtbothsame 44345
Description: Given both a, b are equivalent to , there exists a proof for a is the same as b. (Contributed by Jarvin Udandy, 31-Aug-2016.)
Hypotheses
Ref Expression
bothtbothsame.1 (𝜑 ↔ ⊤)
bothtbothsame.2 (𝜓 ↔ ⊤)
Assertion
Ref Expression
bothtbothsame (𝜑𝜓)

Proof of Theorem bothtbothsame
StepHypRef Expression
1 bothtbothsame.1 . 2 (𝜑 ↔ ⊤)
2 bothtbothsame.2 . 2 (𝜓 ↔ ⊤)
31, 2bitr4i 277 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wtru 1542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  mdandyv1  44396  mdandyv2  44397  mdandyv3  44398  mdandyv4  44399  mdandyv5  44400  mdandyv6  44401  mdandyv7  44402  mdandyv8  44403  mdandyv9  44404  mdandyv10  44405  mdandyv11  44406  mdandyv12  44407  mdandyv13  44408  mdandyv14  44409  mdandyv15  44410  dandysum2p2e4  44444
  Copyright terms: Public domain W3C validator