Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mdandyv6 Structured version   Visualization version   GIF version

Theorem mdandyv6 44450
Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.)
Hypotheses
Ref Expression
mdandyv6.1 (𝜑 ↔ ⊥)
mdandyv6.2 (𝜓 ↔ ⊤)
mdandyv6.3 (𝜒 ↔ ⊥)
mdandyv6.4 (𝜃 ↔ ⊤)
mdandyv6.5 (𝜏 ↔ ⊤)
mdandyv6.6 (𝜂 ↔ ⊥)
Assertion
Ref Expression
mdandyv6 ((((𝜒𝜑) ∧ (𝜃𝜓)) ∧ (𝜏𝜓)) ∧ (𝜂𝜑))

Proof of Theorem mdandyv6
StepHypRef Expression
1 mdandyv6.3 . . . . 5 (𝜒 ↔ ⊥)
2 mdandyv6.1 . . . . 5 (𝜑 ↔ ⊥)
31, 2bothfbothsame 44395 . . . 4 (𝜒𝜑)
4 mdandyv6.4 . . . . 5 (𝜃 ↔ ⊤)
5 mdandyv6.2 . . . . 5 (𝜓 ↔ ⊤)
64, 5bothtbothsame 44394 . . . 4 (𝜃𝜓)
73, 6pm3.2i 471 . . 3 ((𝜒𝜑) ∧ (𝜃𝜓))
8 mdandyv6.5 . . . 4 (𝜏 ↔ ⊤)
98, 5bothtbothsame 44394 . . 3 (𝜏𝜓)
107, 9pm3.2i 471 . 2 (((𝜒𝜑) ∧ (𝜃𝜓)) ∧ (𝜏𝜓))
11 mdandyv6.6 . . 3 (𝜂 ↔ ⊥)
1211, 2bothfbothsame 44395 . 2 (𝜂𝜑)
1310, 12pm3.2i 471 1 ((((𝜒𝜑) ∧ (𝜃𝜓)) ∧ (𝜏𝜓)) ∧ (𝜂𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wtru 1540  wfal 1551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator