| Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mdandyv9 | Structured version Visualization version GIF version | ||
| Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| Ref | Expression |
|---|---|
| mdandyv9.1 | ⊢ (𝜑 ↔ ⊥) |
| mdandyv9.2 | ⊢ (𝜓 ↔ ⊤) |
| mdandyv9.3 | ⊢ (𝜒 ↔ ⊤) |
| mdandyv9.4 | ⊢ (𝜃 ↔ ⊥) |
| mdandyv9.5 | ⊢ (𝜏 ↔ ⊥) |
| mdandyv9.6 | ⊢ (𝜂 ↔ ⊤) |
| Ref | Expression |
|---|---|
| mdandyv9 | ⊢ ((((𝜒 ↔ 𝜓) ∧ (𝜃 ↔ 𝜑)) ∧ (𝜏 ↔ 𝜑)) ∧ (𝜂 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdandyv9.3 | . . . . 5 ⊢ (𝜒 ↔ ⊤) | |
| 2 | mdandyv9.2 | . . . . 5 ⊢ (𝜓 ↔ ⊤) | |
| 3 | 1, 2 | bothtbothsame 46857 | . . . 4 ⊢ (𝜒 ↔ 𝜓) |
| 4 | mdandyv9.4 | . . . . 5 ⊢ (𝜃 ↔ ⊥) | |
| 5 | mdandyv9.1 | . . . . 5 ⊢ (𝜑 ↔ ⊥) | |
| 6 | 4, 5 | bothfbothsame 46858 | . . . 4 ⊢ (𝜃 ↔ 𝜑) |
| 7 | 3, 6 | pm3.2i 470 | . . 3 ⊢ ((𝜒 ↔ 𝜓) ∧ (𝜃 ↔ 𝜑)) |
| 8 | mdandyv9.5 | . . . 4 ⊢ (𝜏 ↔ ⊥) | |
| 9 | 8, 5 | bothfbothsame 46858 | . . 3 ⊢ (𝜏 ↔ 𝜑) |
| 10 | 7, 9 | pm3.2i 470 | . 2 ⊢ (((𝜒 ↔ 𝜓) ∧ (𝜃 ↔ 𝜑)) ∧ (𝜏 ↔ 𝜑)) |
| 11 | mdandyv9.6 | . . 3 ⊢ (𝜂 ↔ ⊤) | |
| 12 | 11, 2 | bothtbothsame 46857 | . 2 ⊢ (𝜂 ↔ 𝜓) |
| 13 | 10, 12 | pm3.2i 470 | 1 ⊢ ((((𝜒 ↔ 𝜓) ∧ (𝜃 ↔ 𝜑)) ∧ (𝜏 ↔ 𝜑)) ∧ (𝜂 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ⊤wtru 1540 ⊥wfal 1551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |