Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mdandyv15 Structured version   Visualization version   GIF version

Theorem mdandyv15 44346
Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.)
Hypotheses
Ref Expression
mdandyv15.1 (𝜑 ↔ ⊥)
mdandyv15.2 (𝜓 ↔ ⊤)
mdandyv15.3 (𝜒 ↔ ⊤)
mdandyv15.4 (𝜃 ↔ ⊤)
mdandyv15.5 (𝜏 ↔ ⊤)
mdandyv15.6 (𝜂 ↔ ⊤)
Assertion
Ref Expression
mdandyv15 ((((𝜒𝜓) ∧ (𝜃𝜓)) ∧ (𝜏𝜓)) ∧ (𝜂𝜓))

Proof of Theorem mdandyv15
StepHypRef Expression
1 mdandyv15.3 . . . . 5 (𝜒 ↔ ⊤)
2 mdandyv15.2 . . . . 5 (𝜓 ↔ ⊤)
31, 2bothtbothsame 44281 . . . 4 (𝜒𝜓)
4 mdandyv15.4 . . . . 5 (𝜃 ↔ ⊤)
54, 2bothtbothsame 44281 . . . 4 (𝜃𝜓)
63, 5pm3.2i 470 . . 3 ((𝜒𝜓) ∧ (𝜃𝜓))
7 mdandyv15.5 . . . 4 (𝜏 ↔ ⊤)
87, 2bothtbothsame 44281 . . 3 (𝜏𝜓)
96, 8pm3.2i 470 . 2 (((𝜒𝜓) ∧ (𝜃𝜓)) ∧ (𝜏𝜓))
10 mdandyv15.6 . . 3 (𝜂 ↔ ⊤)
1110, 2bothtbothsame 44281 . 2 (𝜂𝜓)
129, 11pm3.2i 470 1 ((((𝜒𝜓) ∧ (𝜃𝜓)) ∧ (𝜏𝜓)) ∧ (𝜂𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wtru 1540  wfal 1551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator