Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mdandyvrx10 | Structured version Visualization version GIF version |
Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
Ref | Expression |
---|---|
mdandyvrx10.1 | ⊢ (𝜑 ⊻ 𝜁) |
mdandyvrx10.2 | ⊢ (𝜓 ⊻ 𝜎) |
mdandyvrx10.3 | ⊢ (𝜒 ↔ 𝜑) |
mdandyvrx10.4 | ⊢ (𝜃 ↔ 𝜓) |
mdandyvrx10.5 | ⊢ (𝜏 ↔ 𝜑) |
mdandyvrx10.6 | ⊢ (𝜂 ↔ 𝜓) |
Ref | Expression |
---|---|
mdandyvrx10 | ⊢ ((((𝜒 ⊻ 𝜁) ∧ (𝜃 ⊻ 𝜎)) ∧ (𝜏 ⊻ 𝜁)) ∧ (𝜂 ⊻ 𝜎)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdandyvrx10.2 | . 2 ⊢ (𝜓 ⊻ 𝜎) | |
2 | mdandyvrx10.1 | . 2 ⊢ (𝜑 ⊻ 𝜁) | |
3 | mdandyvrx10.3 | . 2 ⊢ (𝜒 ↔ 𝜑) | |
4 | mdandyvrx10.4 | . 2 ⊢ (𝜃 ↔ 𝜓) | |
5 | mdandyvrx10.5 | . 2 ⊢ (𝜏 ↔ 𝜑) | |
6 | mdandyvrx10.6 | . 2 ⊢ (𝜂 ↔ 𝜓) | |
7 | 1, 2, 3, 4, 5, 6 | mdandyvrx5 44368 | 1 ⊢ ((((𝜒 ⊻ 𝜁) ∧ (𝜃 ⊻ 𝜎)) ∧ (𝜏 ⊻ 𝜁)) ∧ (𝜂 ⊻ 𝜎)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ⊻ wxo 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-xor 1504 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |