|   | Mathbox for Jarvin Udandy | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mdandyvrx9 | Structured version Visualization version GIF version | ||
| Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) | 
| Ref | Expression | 
|---|---|
| mdandyvrx9.1 | ⊢ (𝜑 ⊻ 𝜁) | 
| mdandyvrx9.2 | ⊢ (𝜓 ⊻ 𝜎) | 
| mdandyvrx9.3 | ⊢ (𝜒 ↔ 𝜓) | 
| mdandyvrx9.4 | ⊢ (𝜃 ↔ 𝜑) | 
| mdandyvrx9.5 | ⊢ (𝜏 ↔ 𝜑) | 
| mdandyvrx9.6 | ⊢ (𝜂 ↔ 𝜓) | 
| Ref | Expression | 
|---|---|
| mdandyvrx9 | ⊢ ((((𝜒 ⊻ 𝜎) ∧ (𝜃 ⊻ 𝜁)) ∧ (𝜏 ⊻ 𝜁)) ∧ (𝜂 ⊻ 𝜎)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mdandyvrx9.2 | . 2 ⊢ (𝜓 ⊻ 𝜎) | |
| 2 | mdandyvrx9.1 | . 2 ⊢ (𝜑 ⊻ 𝜁) | |
| 3 | mdandyvrx9.3 | . 2 ⊢ (𝜒 ↔ 𝜓) | |
| 4 | mdandyvrx9.4 | . 2 ⊢ (𝜃 ↔ 𝜑) | |
| 5 | mdandyvrx9.5 | . 2 ⊢ (𝜏 ↔ 𝜑) | |
| 6 | mdandyvrx9.6 | . 2 ⊢ (𝜂 ↔ 𝜓) | |
| 7 | 1, 2, 3, 4, 5, 6 | mdandyvrx6 47004 | 1 ⊢ ((((𝜒 ⊻ 𝜎) ∧ (𝜃 ⊻ 𝜁)) ∧ (𝜏 ⊻ 𝜁)) ∧ (𝜂 ⊻ 𝜎)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 ⊻ wxo 1510 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-xor 1511 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |