Proof of Theorem merco1lem1
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | merco1 1712 | . . . . 5
⊢
(((((⊥ → 𝜑)
→ (𝜑 → ⊥))
→ (𝜑 → ⊥))
→ (⊥ → 𝜑))
→ (((⊥ → 𝜑)
→ ⊥) → (𝜑
→ ⊥))) | 
| 2 |  | merco1 1712 | . . . . 5
⊢
((((((⊥ → 𝜑)
→ (𝜑 → ⊥))
→ (𝜑 → ⊥))
→ (⊥ → 𝜑))
→ (((⊥ → 𝜑)
→ ⊥) → (𝜑
→ ⊥))) → (((((⊥ → 𝜑) → ⊥) → (𝜑 → ⊥)) → (⊥ → 𝜑)) → (𝜑 → (⊥ → 𝜑)))) | 
| 3 | 1, 2 | ax-mp 5 | . . . 4
⊢
(((((⊥ → 𝜑)
→ ⊥) → (𝜑
→ ⊥)) → (⊥ → 𝜑)) → (𝜑 → (⊥ → 𝜑))) | 
| 4 |  | merco1 1712 | . . . 4
⊢
((((((⊥ → 𝜑)
→ ⊥) → (𝜑
→ ⊥)) → (⊥ → 𝜑)) → (𝜑 → (⊥ → 𝜑))) → (((𝜑 → (⊥ → 𝜑)) → (⊥ → 𝜑)) → (𝜑 → (⊥ → 𝜑)))) | 
| 5 | 3, 4 | ax-mp 5 | . . 3
⊢ (((𝜑 → (⊥ → 𝜑)) → (⊥ → 𝜑)) → (𝜑 → (⊥ → 𝜑))) | 
| 6 |  | merco1 1712 | . . . . 5
⊢
(((((⊥ → 𝜑)
→ (𝜑 → ⊥))
→ ((𝜑 → (⊥
→ 𝜑)) → ⊥))
→ (𝜑 → (⊥
→ 𝜑))) → (((𝜑 → (⊥ → 𝜑)) → ⊥) → (𝜑 → ⊥))) | 
| 7 |  | merco1 1712 | . . . . 5
⊢
((((((⊥ → 𝜑)
→ (𝜑 → ⊥))
→ ((𝜑 → (⊥
→ 𝜑)) → ⊥))
→ (𝜑 → (⊥
→ 𝜑))) → (((𝜑 → (⊥ → 𝜑)) → ⊥) → (𝜑 → ⊥))) →
(((((𝜑 → (⊥ →
𝜑)) → ⊥) →
(𝜑 → ⊥)) →
(⊥ → 𝜑)) →
((𝜑 → (⊥ →
𝜑)) → (⊥ →
𝜑)))) | 
| 8 | 6, 7 | ax-mp 5 | . . . 4
⊢
(((((𝜑 → (⊥
→ 𝜑)) → ⊥)
→ (𝜑 → ⊥))
→ (⊥ → 𝜑))
→ ((𝜑 → (⊥
→ 𝜑)) → (⊥
→ 𝜑))) | 
| 9 |  | merco1 1712 | . . . 4
⊢
((((((𝜑 → (⊥
→ 𝜑)) → ⊥)
→ (𝜑 → ⊥))
→ (⊥ → 𝜑))
→ ((𝜑 → (⊥
→ 𝜑)) → (⊥
→ 𝜑))) → ((((𝜑 → (⊥ → 𝜑)) → (⊥ → 𝜑)) → (𝜑 → (⊥ → 𝜑))) → (𝜑 → (𝜑 → (⊥ → 𝜑))))) | 
| 10 | 8, 9 | ax-mp 5 | . . 3
⊢ ((((𝜑 → (⊥ → 𝜑)) → (⊥ → 𝜑)) → (𝜑 → (⊥ → 𝜑))) → (𝜑 → (𝜑 → (⊥ → 𝜑)))) | 
| 11 | 5, 10 | ax-mp 5 | . 2
⊢ (𝜑 → (𝜑 → (⊥ → 𝜑))) | 
| 12 |  | merco1 1712 | . . . . 5
⊢
(((((⊥ → 𝜑)
→ (𝜑 → ⊥))
→ (𝜑 → ⊥))
→ (⊥ → 𝜒))
→ (((⊥ → 𝜒)
→ ⊥) → (𝜑
→ ⊥))) | 
| 13 |  | merco1 1712 | . . . . 5
⊢
((((((⊥ → 𝜑)
→ (𝜑 → ⊥))
→ (𝜑 → ⊥))
→ (⊥ → 𝜒))
→ (((⊥ → 𝜒)
→ ⊥) → (𝜑
→ ⊥))) → (((((⊥ → 𝜒) → ⊥) → (𝜑 → ⊥)) → (⊥ → 𝜑)) → (𝜑 → (⊥ → 𝜑)))) | 
| 14 | 12, 13 | ax-mp 5 | . . . 4
⊢
(((((⊥ → 𝜒)
→ ⊥) → (𝜑
→ ⊥)) → (⊥ → 𝜑)) → (𝜑 → (⊥ → 𝜑))) | 
| 15 |  | merco1 1712 | . . . 4
⊢
((((((⊥ → 𝜒)
→ ⊥) → (𝜑
→ ⊥)) → (⊥ → 𝜑)) → (𝜑 → (⊥ → 𝜑))) → (((𝜑 → (⊥ → 𝜑)) → (⊥ → 𝜒)) → (𝜑 → (⊥ → 𝜒)))) | 
| 16 | 14, 15 | ax-mp 5 | . . 3
⊢ (((𝜑 → (⊥ → 𝜑)) → (⊥ → 𝜒)) → (𝜑 → (⊥ → 𝜒))) | 
| 17 |  | merco1 1712 | . . . . 5
⊢
(((((⊥ → 𝜒)
→ ((𝜑 → (𝜑 → (⊥ → 𝜑))) → ⊥)) → ((𝜑 → (⊥ → 𝜑)) → ⊥)) → (𝜑 → (⊥ → 𝜒))) → (((𝜑 → (⊥ → 𝜒)) → ⊥) → ((𝜑 → (𝜑 → (⊥ → 𝜑))) → ⊥))) | 
| 18 |  | merco1 1712 | . . . . 5
⊢
((((((⊥ → 𝜒)
→ ((𝜑 → (𝜑 → (⊥ → 𝜑))) → ⊥)) → ((𝜑 → (⊥ → 𝜑)) → ⊥)) → (𝜑 → (⊥ → 𝜒))) → (((𝜑 → (⊥ → 𝜒)) → ⊥) → ((𝜑 → (𝜑 → (⊥ → 𝜑))) → ⊥))) → (((((𝜑 → (⊥ → 𝜒)) → ⊥) → ((𝜑 → (𝜑 → (⊥ → 𝜑))) → ⊥)) → (⊥ →
𝜒)) → ((𝜑 → (⊥ → 𝜑)) → (⊥ → 𝜒)))) | 
| 19 | 17, 18 | ax-mp 5 | . . . 4
⊢
(((((𝜑 → (⊥
→ 𝜒)) → ⊥)
→ ((𝜑 → (𝜑 → (⊥ → 𝜑))) → ⊥)) → (⊥
→ 𝜒)) → ((𝜑 → (⊥ → 𝜑)) → (⊥ → 𝜒))) | 
| 20 |  | merco1 1712 | . . . 4
⊢
((((((𝜑 → (⊥
→ 𝜒)) → ⊥)
→ ((𝜑 → (𝜑 → (⊥ → 𝜑))) → ⊥)) → (⊥
→ 𝜒)) → ((𝜑 → (⊥ → 𝜑)) → (⊥ → 𝜒))) → ((((𝜑 → (⊥ → 𝜑)) → (⊥ → 𝜒)) → (𝜑 → (⊥ → 𝜒))) → ((𝜑 → (𝜑 → (⊥ → 𝜑))) → (𝜑 → (⊥ → 𝜒))))) | 
| 21 | 19, 20 | ax-mp 5 | . . 3
⊢ ((((𝜑 → (⊥ → 𝜑)) → (⊥ → 𝜒)) → (𝜑 → (⊥ → 𝜒))) → ((𝜑 → (𝜑 → (⊥ → 𝜑))) → (𝜑 → (⊥ → 𝜒)))) | 
| 22 | 16, 21 | ax-mp 5 | . 2
⊢ ((𝜑 → (𝜑 → (⊥ → 𝜑))) → (𝜑 → (⊥ → 𝜒))) | 
| 23 | 11, 22 | ax-mp 5 | 1
⊢ (𝜑 → (⊥ → 𝜒)) |