MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  retbwax4 Structured version   Visualization version   GIF version

Theorem retbwax4 1719
Description: tbw-ax4 1707 rederived from merco1 1717. (Contributed by Anthony Hart, 17-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
retbwax4 (⊥ → 𝜑)

Proof of Theorem retbwax4
StepHypRef Expression
1 merco1lem1 1718 . 2 (𝜑 → (⊥ → 𝜑))
2 merco1lem1 1718 . 2 ((𝜑 → (⊥ → 𝜑)) → (⊥ → 𝜑))
31, 2ax-mp 5 1 (⊥ → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wfal 1551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-tru 1542  df-fal 1552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator