Proof of Theorem retbwax2
| Step | Hyp | Ref
| Expression |
| 1 | | merco1lem1 1714 |
. . . 4
⊢
(((((𝜑 → 𝜑) → 𝜑) → (𝜑 → ⊥)) → 𝜑) → (⊥ → 𝜑)) |
| 2 | | merco1 1713 |
. . . 4
⊢
((((((𝜑 → 𝜑) → 𝜑) → (𝜑 → ⊥)) → 𝜑) → (⊥ → 𝜑)) → (((⊥ → 𝜑) → (𝜑 → 𝜑)) → (𝜑 → (𝜑 → 𝜑)))) |
| 3 | 1, 2 | ax-mp 5 |
. . 3
⊢ (((⊥
→ 𝜑) → (𝜑 → 𝜑)) → (𝜑 → (𝜑 → 𝜑))) |
| 4 | | merco1 1713 |
. . . 4
⊢
(((((𝜑 → (𝜑 → 𝜑)) → (𝜑 → ⊥)) → (𝜑 → ⊥)) → ⊥) →
((⊥ → 𝜑) →
(𝜑 → 𝜑))) |
| 5 | | merco1 1713 |
. . . 4
⊢
((((((𝜑 → (𝜑 → 𝜑)) → (𝜑 → ⊥)) → (𝜑 → ⊥)) → ⊥) →
((⊥ → 𝜑) →
(𝜑 → 𝜑))) → ((((⊥ → 𝜑) → (𝜑 → 𝜑)) → (𝜑 → (𝜑 → 𝜑))) → (𝜑 → (𝜑 → (𝜑 → 𝜑))))) |
| 6 | 4, 5 | ax-mp 5 |
. . 3
⊢
((((⊥ → 𝜑)
→ (𝜑 → 𝜑)) → (𝜑 → (𝜑 → 𝜑))) → (𝜑 → (𝜑 → (𝜑 → 𝜑)))) |
| 7 | 3, 6 | ax-mp 5 |
. 2
⊢ (𝜑 → (𝜑 → (𝜑 → 𝜑))) |
| 8 | | merco1lem1 1714 |
. . . 4
⊢
(((((𝜓 → 𝜑) → 𝜑) → (𝜑 → ⊥)) → 𝜑) → (⊥ → 𝜑)) |
| 9 | | merco1 1713 |
. . . 4
⊢
((((((𝜓 → 𝜑) → 𝜑) → (𝜑 → ⊥)) → 𝜑) → (⊥ → 𝜑)) → (((⊥ → 𝜑) → (𝜓 → 𝜑)) → (𝜑 → (𝜓 → 𝜑)))) |
| 10 | 8, 9 | ax-mp 5 |
. . 3
⊢ (((⊥
→ 𝜑) → (𝜓 → 𝜑)) → (𝜑 → (𝜓 → 𝜑))) |
| 11 | | merco1 1713 |
. . . 4
⊢
(((((𝜑 → (𝜓 → 𝜑)) → (𝜓 → ⊥)) → ((𝜑 → (𝜑 → (𝜑 → 𝜑))) → ⊥)) → ⊥) →
((⊥ → 𝜑) →
(𝜓 → 𝜑))) |
| 12 | | merco1 1713 |
. . . 4
⊢
((((((𝜑 → (𝜓 → 𝜑)) → (𝜓 → ⊥)) → ((𝜑 → (𝜑 → (𝜑 → 𝜑))) → ⊥)) → ⊥) →
((⊥ → 𝜑) →
(𝜓 → 𝜑))) → ((((⊥ → 𝜑) → (𝜓 → 𝜑)) → (𝜑 → (𝜓 → 𝜑))) → ((𝜑 → (𝜑 → (𝜑 → 𝜑))) → (𝜑 → (𝜓 → 𝜑))))) |
| 13 | 11, 12 | ax-mp 5 |
. . 3
⊢
((((⊥ → 𝜑)
→ (𝜓 → 𝜑)) → (𝜑 → (𝜓 → 𝜑))) → ((𝜑 → (𝜑 → (𝜑 → 𝜑))) → (𝜑 → (𝜓 → 𝜑)))) |
| 14 | 10, 13 | ax-mp 5 |
. 2
⊢ ((𝜑 → (𝜑 → (𝜑 → 𝜑))) → (𝜑 → (𝜓 → 𝜑))) |
| 15 | 7, 14 | ax-mp 5 |
1
⊢ (𝜑 → (𝜓 → 𝜑)) |