|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > merco1lem13 | Structured version Visualization version GIF version | ||
| Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1713. (Contributed by Anthony Hart, 18-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| merco1lem13 | ⊢ ((((𝜑 → 𝜓) → (𝜒 → 𝜓)) → 𝜏) → (𝜑 → 𝜏)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | merco1 1713 | . . . 4 ⊢ (((((𝜓 → 𝜑) → (𝜒 → ⊥)) → 𝜑) → 𝜑) → ((𝜑 → 𝜓) → (𝜒 → 𝜓))) | |
| 2 | merco1lem4 1719 | . . . 4 ⊢ ((((((𝜓 → 𝜑) → (𝜒 → ⊥)) → 𝜑) → 𝜑) → ((𝜑 → 𝜓) → (𝜒 → 𝜓))) → (𝜑 → ((𝜑 → 𝜓) → (𝜒 → 𝜓)))) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (𝜑 → ((𝜑 → 𝜓) → (𝜒 → 𝜓))) | 
| 4 | merco1lem12 1728 | . . 3 ⊢ ((𝜑 → ((𝜑 → 𝜓) → (𝜒 → 𝜓))) → ((((𝜏 → 𝜑) → (𝜑 → ⊥)) → 𝜑) → ((𝜑 → 𝜓) → (𝜒 → 𝜓)))) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ ((((𝜏 → 𝜑) → (𝜑 → ⊥)) → 𝜑) → ((𝜑 → 𝜓) → (𝜒 → 𝜓))) | 
| 6 | merco1 1713 | . 2 ⊢ (((((𝜏 → 𝜑) → (𝜑 → ⊥)) → 𝜑) → ((𝜑 → 𝜓) → (𝜒 → 𝜓))) → ((((𝜑 → 𝜓) → (𝜒 → 𝜓)) → 𝜏) → (𝜑 → 𝜏))) | |
| 7 | 5, 6 | ax-mp 5 | 1 ⊢ ((((𝜑 → 𝜓) → (𝜒 → 𝜓)) → 𝜏) → (𝜑 → 𝜏)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ⊥wfal 1552 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-tru 1543 df-fal 1553 | 
| This theorem is referenced by: merco1lem14 1730 merco1lem15 1731 retbwax1 1735 | 
| Copyright terms: Public domain | W3C validator |